A Generalization of Chiral SW_3 Model (*) (**).

S. OKUBO

Department of Physics and Astronomy, University of Rochester - Rochester, N. Y.

(riccunto il 27 Settembre 1971)

Summary. — Assuming the algebra of currents, PCAC for pions, and some other technical conditions, we prove that any Hamiltonian density $H(x)$, whose SU_3-breaking component belongs to the $(3, 3^*) \oplus (3^*, 3)$ representation of the SW_3-group, must automatically have the following structure:

$H(x) = H_0(x) + H_1(x) + H_2(x)$.

$H_0(x)$ is invariant under SW_3, $H_1(x)$ breaks SU_3 but is invariant under SW_2, while $H_2(x)$ is invariant under SU_3 but violates SW_3. Also, $H_3(x)$ will vanish in the soft-pion limit. This model contains, as special cases, the schemes of Gell-Mann, Oakes and Renner, and of Glashow and Weinberg.

1. Introduction and summary of results.

Some years ago, GELL-MANN, OAKES and RENNER (1) and independently GLASHOW and WEINBERG (2) (hereafter referred to as GMOR-GW) proposed an interesting model with the Hamiltonian density

(1.1)

$H(x) = H_0(x) + \varepsilon_0 S^{(0)}(x) + \varepsilon_8 S^{(8)}(x)$,

where $H_0(x)$ is invariant under the chiral SW_3 group, and the scalar densities $S^{(x)}(x)$ together with their pseudoscalar counterparts $p^{(x)}(x)$ ($x = 0, 1, ..., 8$) belong to a $(3, 3^*) \oplus (3^*, 3)$ representation of the group. Using the local generalization of the usual equation of motion together with the algebra of cur-

(*) To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

(**) Work supported in part by the U.S. Atomic Energy Commission.

rents, they derived the following partial conservation laws:

\begin{align}
\partial_\mu V_\mu^\alpha(x) &= \epsilon_\beta f_{\alpha\beta\gamma} S_\gamma(x), \\
\partial_\mu A_\mu^a(x) &= (\epsilon_\alpha d_{a\beta\gamma} + \epsilon_\beta d_{a\beta\gamma}) P^\beta(x),
\end{align}

where the repeated index \(\beta \) implies an automatic summation over \(\beta = 0, 1, \ldots, 8 \), and \(a \) assumes values \(a = 1, \ldots, 8 \). In the above, \(V_\mu^\alpha(x) \) and \(A_\mu^a(x) \) are the usual vector and axial-vector currents whose 4th components generate the Lie algebra of the \(SW_3 \) group.

If we define \(^{(1)}\) a parameter \(a \) by

\begin{equation}
a = \epsilon_\alpha / \sqrt{2} \epsilon_0,
\end{equation}

then we find that \(H(x) \) becomes invariant under various subgroups of \(SW_3 \) such as ordinary \(SU_3 \), \(SW_3 \) and chiral \(SU_3 \) at the special points \(a = 0, -1 \) and \(2 \), respectively. Usually, we implement the theory with the philosophy that at the \(SW_2 \) point \(a = -1 \) the pion emerges as a zero-mass Nambu-Goldstone boson. Thus the small pion mass \(m_\pi = 140 \) MeV, becomes readily understandable if \(H(x) \) is approximately \(SW_2 \)-invariant with the value of \(a \) close to \(-1 \).

Although this theory is elegant, as yet there seems to be no firm experimental evidence in favor of the model. Indeed, the original calculation \(^{(5)}\) of Kim and von Hippel which was considered to support the model has been criticized recently by several authors \(^{(4,5)}\), especially by Cheng and Dashen who obtained a value for the \(\sigma \)-term nearly four times larger. (However, several other authors \(^{(5)}\) give values for the \(\sigma \)-term which are very close to that given by Kim and von Hippel.) Thus the whole question appears still to be open. It may be worth-while to remark in this connection that the calculation by Cheng and Dashen can be still compatible with the GMOR-GW model, provided the following alternatives hold. Either \(^{(4,5)}\) the parameter \(a \) is near the \(SU_3 \) point \(a = 0 \) rather than the \(SW_2 \) point \(a = -1 \), or the scale-