Experimental Study of the Matrix Element
in the $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ Decay (*)

B. Aubert, P. Heusse, C. Pascaud and J. P. Vialle

Université Paris-Sud, Laboratoire de l'Accélérateur Linéaire - Orsay

D. Bertrand (**) and P. Vilain (***)

Service de Physique des Particules Elémentaires, Université Libre - Bruxelles

V. Brisson and P. Petiau

Laboratoire de Physique Nucléaire des Hautes Energies, École Polytechnique - Paris

(riccuito il 17 Marzo 1972)

Summary. — Two independent analyses of the decay mode $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ (τ' mode) are presented; the first one only concerns the π^+ meson energy spectrum, while the second one is based on τ' decays for which the kinematics is completely determined. A linear description of the matrix element $M = 1 + a(M_{K^\pi} M_{\pi^0}^2) (2T^+ - T_{\text{max}}^+)$ is found to be satisfactory. The value found for a is -0.32 ± 0.02.

We present here two analyses of the decay mode $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ based on a fraction of the material used in the $X2$-experiment (1) in which $5 \cdot 10^5 K^+$-mesons were stopped in the 1.2 m3 CERN heavy-liquid bubble chamber filled with freon C_2F_5Cl. A total of 124 000 pictures, containing on the average 7 K^+-meson decays at rest, have been scanned using either procedure.

(*) To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

(**) Aspirant du Fonds National de la Recherche Scientifique.

(***) Chercheur agréé de l'Institut Interuniversitaire des Sciences Nucléaires.

1. - Experimental procedure.

1'1. Scanning criteria.

a) Analysis I (Brussels). The aim of this analysis is to determine only the π^+-meson energy spectrum. Therefore, the τ' decay candidates were selected in the following way:

the ionization of the K^+-meson track at the decay was consistent with that of a stopping K^+-meson,

the decays for which the K^+-meson scatters within the last centimeter were rejected,

the projected range of the charged secondary was less than 15 cm on the three views (the maximum π^+ range in a τ' decay is 10.5 cm in this experiment) and no interaction or scattering of more than 20° was observed along its track,

the secondary from the K^+ decay was identified as a pion, i.e. the complete $\pi^+-\nu-e$ decay chain was clearly visible.

Approximately 22000 pictures have been scanned twice by this method, the scanning efficiency being $(96 \pm 2)\%$. In order to avoid contamination by other decay modes (essentially $K^+ \to \pi^+\pi^0$ decays in flight) it was furthermore required that three or more γ-rays could be pointed back to the K^+-meson vertex. The final sample contains 1157 events.

b) Analysis II (Orsay and Paris). A more detailed analysis has been performed taking into account the measurements of the converted γ-rays. Events for which at least two converted γ-rays pointed back to the K^+-meson vertex were scanned for, independently of the K^+-meson decay mode. The τ' candidates had to satisfy the following conditions:

the range of the charged secondary was less than 10.5 cm,

three or more γ-rays were associated to the K^+ decay point,

conditions similar to the ones applied in analysis I were used to eliminate K^+-meson decays in flight and secondary π^+-meson interactions.

About 102 000 pictures have been scanned leading to a sample of 1700 events. A partial second scanning allows us to show that the scanning efficiency is independent of the π^+ and the π^0 energy. The efficiency $(66 \pm 2)\%$ takes into account the detection and correlation of γ-rays.

1'2. Measurement, geometrical reconstruction and kinematical analysis. – In analysis I, the measurement and reconstruction of the π^+ meson track do not