On the Decay of the 95Tc Isomer (*)

G. Chilosi, R. A. Ricci, G. Varcaccio and G. B. Vingiani

Istituto di Fisica Superiore dell'Università - Napoli
Istituto Nazionale di Fisica Nucleare - Sottosezione di Napoli

(ricevuto il 10 Novembre 1960)

Summary. — The γ-ray spectrum following the radioactive decay of the 95Tc isomer (half life 62d) has been investigated by scintillation techniques. The sources were obtained by Mo(d, 2n) reactions in the synchrocyclotron of the Institute for Nuclear Physics Research in Amsterdam. The measurements were performed with a NaI(Tl) well-type crystal (76 mm \times 76 mm) and the different spectra were displayed in a 200 channel LABEN analyser. γ-γ cascades were investigated with a conventional coincidence set-up and using the summing technique. The direct disintegration of the isomeric state of 95Tc to the stable 95Mo, in competition with the 39 keV isomeric transition to the 95Tc ground-state, is confirmed. Excited levels of 1040, 820, 780 and 203 keV are assigned to the 95Mo structure, de-exciting mostly with the following transitions, in keV: 1040 (5\pm1), 838 (38\pm4), 820 (13\pm2), 780 (17\pm2), 580 (50\pm5); 203 (100).

1. — Introduction.

95Tc is known to disintegrate into 95Mo by positrons and electron captures with two different activities corresponding to the 20 h ground state decay and to the 60 days metastable state decay. The two activities have been reported by several authors (1) who used (x, p), (p, n) and $(d, 2n)$ reactions to produce them.

(*) Comunicato al XLVI Congresso della Società Italiana di Fisica, Napoli (Settembre-Ottobre 1960).

The first type of decay seems to occur only by electron capture (2) populating levels in 95Mo at 1070, 930 and 760 keV which de-excite by direct γ-rays to the 95Mo ground-state (2,3).

The second type of decay occurs also by two weak positon transitions of 460 and 680 keV (4) and seems to populate levels at 1020, 770 and 200 keV in 95Mo as deduced by the associated γ-rays of energy: 1020, 810, 570 and 201 keV (2,3,5).

The metastable state decays also to the 95Tc ground state by a 39 keV isomeric transition, for 3% of the total number of disintegrations, as established by MEDICUS and PREISWERK (4).

Some ambiguities about the level structure of 95Mo have been solved more recently by UNIK and RASMUSSEN (7) who studied the decay of the 95Tc isomer essentially with high resolution spectrometer techniques.

They found γ transitions of energy 204, 584, 763, 768, 784, 822, 837 and 1040 keV and assigned levels at 204, 763, 784, 788, 822 and 1040 keV to 95Mo, populated from the decay of the 95Tc metastable state, while the 768 keV γ-ray was interpreted as the de-excitation of the level at the same energy known from the decay of the 95Tc ground state. However the relative photon intensities were mostly deduced from the relative internal conversion electron intensities and on the basis of theoretical interpretations of the γ transition multipolarities. The level structure of 95Mo, as proposed by UNIK and RASMUSSEN, is mostly based on these deductions.

In order to obtain independent direct information about the de-excitation properties of the 95Mo levels populated from the decay of the 95Tc isomer, the γ-ray spectrum associated with this decay was investigated in a detailed way at this laboratory, using scintillation techniques.

2. - Source production and experimental techniques.

Several sources of 95Tc were produced by bombarding natural Mo with 24 MeV deuterons (20 μAh) in the synchrocyclotron of the Instituut voor Kernphysisch Onderzoek (IKO) in Amsterdam. The irradiated targets were