Production of N^* in Neutrino Reactions (*)

C. W. Kim

Physics Department, University of Pennsylvania, Philadelphia, Pa.

(ricavuto il 21 Ottobre 1964)

Summary. — The production cross-section of the N^* pion-nucleon isobar in neutrino-reactions is calculated. In order to determine the values of some of the form factors, the conserved vector current theory and the Goldberger-Treiman relation have been used. The high-energy behavior of the total cross-section is shown to depend rather sensitively on the high-momentum transfer behavior of the form factors.

1. — Introduction.

Recently, a considerable number of single-pion production events have been observed in the neutrino-nucleon collision experiment. These events are now believed to be predominantly associated with the production of the N^* pion-nucleon isobar ($T=J=\frac{3}{2}$) which decays into a pion and a nucleon. While the calculations of the production cross-section of the isobar have been reported in the past (1-3), their authors, obeying either simplicity or considerations based on specific models, have retained only a few of the possible form factors. In contrast, our calculation retains all form factors consistent with Lorentz invariance and the notion of the current \times current structure of leptonic weak interactions. We shall discuss the behavior of the pion production total cross-section for several alternative behaviors of the form

(*) Supported by the National Science Foundation.

(1) M. Veltman: Proceedings S.I.F., Course XXXII (1964) (to be published); S. Berman and M. Veltman: preprint.

(2) R. H. Good jr., et al.: preprint.

factors at high momentum transfers. As expected, the high-energy behavior of the total cross-section is shown to depend rather sensitively on the high momentum transfer behavior of the form factors.

2. - Calculation of the production cross-section.

The matrix element for the reaction $\nu^+ N \rightarrow l^- + N^{*}$ may be written as

$$\mathcal{M} = \frac{G}{\sqrt{2}} \bar{u}_f \gamma_\mu (1 + \gamma_5) u_\nu \langle N^{*} | V_\mu + A_\mu | N \rangle,$$

where G is the universal Fermi coupling constant. The matrix elements of the vector and axial vector currents V_μ, A_μ are

$$\langle N^{*} | V_\mu | N \rangle = \bar{\omega}_v(p') \left\{ (\delta_{\mu\nu} - q_\mu q_\nu / q^2) F_v(q^2) + \right.$$
$$+ i q_\mu [\gamma_\mu - i (m + m')q_\mu / q^2] G_v(q^2) / m + i q_\mu q_\nu H_v(q^2) / m^2 \right\} \gamma_u u(p),$$

$$\langle N^{*} | A_\mu | N \rangle = \bar{\omega}_v(p') \left\{ \delta_{\mu\nu} F_a(q^2) + i q_\mu \gamma_\mu G_a(q^2) / m +
$$
$$+ q_\mu (p' - p')_\nu H_a(q^2) / m^2 + q_\mu q_\nu F_a(q^2) / m^2 \right\} u(p),$$

where $\omega_v(p')$ is the Rarita-Schwinger wave function (1) for the isobar and $u(p)$ is the nucleon spinor, $q = p' - p$ is the momentum transfer and m and m' are masses of the nucleon and isobar, respectively. The form factors $F_v(q^2)$ are relatively real on the basis of the time reversal invariance. In deriving eq. (2) we have used the conserved current hypothesis. Since V_μ is assumed to be the conserved isotopic spin current, $F_v(0), G_v(0)$ and $H_v(0)$ may be determined from the analysis of photoproduction of the isobar. From the analysis of Gourdin and Salin (6), we obtain

$$\begin{align*}
F_v(0) &= \sqrt{3} F_{1}^{(\text{em})}(0) \approx 9.70, \\
G_v(0) &= -\sqrt{3} F_{2}^{(\text{em})}(0) \approx 4.33, \\
H_v(0) &\approx 0.
\end{align*}$$

Further, the usual argument (8) used in deriving the Goldberger-Treiman rela-
