Quasi-Static Waves in Inhomogeneous Magnetoplasma Slabs (*).

P. de Santis (**)
Selenia S.p.A. - Roma
(ricevuto il 18 Luglio 1964)

Summary. — Starting from Maxwell's equations, a theoretical investigation of the propagation of a quasi-static E-mode in a longitudinally magnetized plasma slab is made. A transmission-line equation is obtained for the electric field and the Ritz-Rayleigh variational method is used to minimize the error over the cross-section of the slab, when a trial function for the field distribution in the plasma is assumed. A parabolic distribution is taken as an analytical model for the electron-density profile in the cross-section, and the electron density is supposed to vanish at a point outside the plasma slab; in the limit for the zero point to go to infinity, uniform case-equations are recovered. Under these conditions, a dispersion relation is derived and dispersion curves are calculated and plotted for some numerical cases of interest. In the homogeneous case a comparison is made between the approximate solutions and the exact solutions.

List and explanation of main symbols.

x, y, z co-ordinate axes, as in Fig. 1,
E electric field of the propagating wave,
H magnetic field of the propagating wave,
$E_{zp}(u)$ cross-sectional distribution of the longitudinal electric field component inside the plasma,

(*) This work has been sponsored by the Cambridge Research Laboratories, OAR through the European Office, Aerospace Research, United States Air Force under Contract AF 61(052)-145.

$E_{z\phi}(u)$ cross-sectional distribution of the longitudinal electric field component outside the plasma,
E_0, E_1 amplitude constants of $E_{z\phi}(u)$,
β longitudinal propagation constant,
u βx,
$2d$ slab thickness,
$2D$ distance between outside parallel metal plates,
l value of $|x|$ (> d) at which the electron density is zero,
B_0 longitudinal static magnetic field,
ε dielectric constant tensor,
$\varepsilon_1, \varepsilon_2, \varepsilon_3$ dielectric constant tensor components,
μ_0 free space permeability,
δ βd,
Δ βD,
λ βl,
$f(u)$ cross-sectional, symmetric distribution of the electron density, normalized so that $f(0) = 1$,
L second-order linear differential operator,
μ λ/δ,
μ parameter characterizing the cross-sectional inhomogeneity (>1),
ω angular frequency of the propagating wave,
ω_b electron cyclotron angular frequency at the B_0 field,
$\omega_{\phi0}$ plasma angular frequency at the $x=0$ center of the slab,

$$X_1 = \omega_b^2/\omega^2 = 1/\delta^2,$$
$$Y^2 = \omega_b^2/\omega^2,$$
$$a = \omega_b^2/\omega_{\phi0}^2,$$
$$\tau = 1 - (1 - Y^2)/X_0,$$
$$\tau_0 = 1 - 1/X_0.$$

1. - Introduction.

The propagation of electromagnetic waves in a magnetoplasma for which the average net charge is zero, may be macroscopically characterized by an equivalent dielectric constant, ε, which, in the most general case, is a tensor quantity.

In a lossless case, if the plasma is cold so that pressure and temperature gradients are neglected, the dielectric tensor is hermitian and its structure is

$$\varepsilon = \begin{pmatrix}
\varepsilon_1 & j\varepsilon_2 & 0 \\
-j\varepsilon_2 & \varepsilon_1 & 0 \\
0 & 0 & \varepsilon_3
\end{pmatrix}.$$