Essence of the Third Law: The Delineation of Two Forms of Thermodynamics (*)(**).

B. H. Lavenda (1) and J. Dunning-Davies (2)
(1) Università di Camerino - 62032 Camerino (MC), Italy
(2) Department of Applied Mathematics, University of Hull - Hull HU6 7RX, UK

Summary. — The third law is generalized to the effect that for systems in internal thermodynamic equilibrium, either the entropy tends to zero with the temperature, implying a state of complete order, or the entropy tends to its maximum value as the temperature increases without limit, indicating a state of complete disorder.

PACS 05.70 - Thermodynamics.
PACS 65.50 - Thermodynamic properties and entropy.

1. – The third law for conventional thermodynamics.

The third law, or Nernst's postulate, is stated conventionally as «the contribution to the entropy of a system by each aspect which is in internal thermodynamic equilibrium tends to zero at absolute zero» [1]. It is usually contended that the appreciation of the Nernst postulate had to await the discovery of quantum statistics, since classical statistics did not obey the postulate [2].

We shall state the third law in such a way that it incorporates the classical ideal gas. The entropy density of quantum statistics is, in energy units where Boltzmann's constant is unity,

\[s(x) = x \ln \left(\frac{y + x}{x} \right) \pm y \ln \left(\frac{y + x}{y} \right), \]

where «+» and «−» signs refer to Bose-Einstein (BE) and Fermi-Dirac (FD) statistics, respectively. The number of quanta or particles in a given frequency interval is denoted by x. For BE statistics, y represents the number of oscillators in a

(*) The authors of this paper have agreed to not receive the proofs for correction.
(**) Work supported by the EU Human Capital and Mobility Programme (Contract No. ERBCHRXCT920007).
given frequency interval per unit volume, while for FD statistics it represents the total number of states available. In the small-\(x\) limit, (1) reduces to

\[
(2) \quad s(x) = -x \ln \left(\frac{x}{y} \right).
\]

The entropy density, (2), satisfies the inequality

\[
(3) \quad s((1 - \lambda)x_1 + \lambda x_2) \geq (1 - \lambda)s(x_1) + \lambda s(x_2),
\]

where the parameter \(\lambda \in [0, 1]\). The inequality in (3) asserts that every point of the chord connecting the end points \(x_1\) and \(x_2\) lies below the curve. Such a function is said to be concave\[3\]. Moreover, since \(s(0) = 0\), we can choose one of the end points of the interval at the origin, say \(x_1 = 0\). Then the criterion of concavity reduces to\[4\]

\[
(4) \quad s(\lambda x) \geq \lambda s(x).
\]

Then, setting \(\lambda x = x_a\) and \((1 - \lambda)x = x_b\) such that \(x_a + x_b = x\), the sum of (4) and \(s((1 - \lambda)x) = (1 - \lambda) s(x)\) gives

\[
(5) \quad s(x_a) + s(x_b) \geq s(x_a + x_b),
\]

showing that the quantum statistical entropy is subadditive.

The same conclusion can be reached by the concavity criterion

\[
(6) \quad s''(x) < 0,
\]

where the prime denotes differentiation, and the third law

\[
(7) \quad s(0) = 0 \quad \text{for} \quad T = 0.
\]

The temperature is given by the second law

\[
(8) \quad s'(x) = \frac{\chi}{T},
\]

where \(\chi\) is the intensive variable conjugate to \(x\). Taken together (6) and (7) imply that \(s(x)/x\) is a decreasing function (theorem 127, p. 99 of ref.\[3\]). This means that

\[
x^2 \frac{d}{dx} \left(\frac{s(x)}{x} \right) = xs'(x) - s(x) \leq 0,
\]

or

\[
(9) \quad s(x)/x \geq s'(x).
\]

This is a sufficient condition that the entropy density satisfy (5) (theorem 103, p. 83 of ref.\[3\]). Hence,

\[
[\text{Concavity (6) + Third law (7) \Rightarrow Subadditivity (5)}]
\]

We can even do away with the third law, in the form (7), and show that subadditivity follows directly from the concavity of the entropy. The concavity of the