Competition between ^5Li and ^8Be Formation in the $^6\text{Li}(^3\text{He}, \alpha\text{p})$ Reaction at $E_{^3\text{He}} = 2.5$ MeV (*).

N. Arena, S. Cavallaro, M. Lattuada, R. Potenza and M. L. Sperduto

Istituto di Fisica dell'Università - Catania
Istituto Nazionale di Fisica Nucleare - Sezione di Catania
Centro Siciliano di Fisica Nucleare e di Struttura della Materia - Catania

V. D’Amico, G. Fazio, S. Femino and S. Jannelli

Istituto di Fisica dell’Università - Messina
Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Gruppo di Messina

(ricevuto il 21 Febbraio 1977)

The sequential mechanism exhibited by three-body final-state reactions is reclaimed as a validity test for the two-cluster model of light nuclei (*).

Furthermore, according to this model, the decay of a light excited nucleus with different two-cluster parents, is required to evolve mainly by the separation of the clusters with the lowest relative kinetic energy (*). Therefore, if the various excited states of the ^9B nucleus are describable by a mixture of the $\alpha + ^3\text{Li}$ and $\text{p} + ^8\text{Be}$ two-cluster configurations, when this nucleus is formed as a compound nucleus in the $^6\text{Li}(^3\text{He}, \alpha\text{p})$ reaction, the $\text{p} + ^8\text{Be}^*$ process should dominate the $\alpha + ^3\text{Li}$ (g.s.) one. Up to about 3 MeV bombarding energy the $^6\text{Li} + ^3\text{He} \rightarrow \text{p} + ^8\text{Be}$ (at 0 and 2.9 MeV states) reaction is interpreted to proceed essentially by compound-nucleus mechanism (*). However even at incident energy as low as 1 MeV, a direct mechanism appears a good description for the $^6\text{Li} + ^3\text{He} \rightarrow \alpha + ^3\text{Li}$ (g.s.) reaction (*). In this situation we have studied the $^6\text{Li}(^3\text{He}, \alpha\text{p})$ reaction at 2.5 MeV bombarding energy, with the aim to investigate how much the two-cluster model predictions are true when compound-nucleus mechanism is in the presence of the direct one.

A 100 μg/cm2 LiF target 98% enriched in ^6Li was bombarded by 2.5 MeV ^3He-beam of the Van de Graaf accelerator of the CSFN-SM laboratories in Catania. The bidimensional spectra were measured by detecting in coincidence the outgoing α-particles. The 100 μm sensitive depth of the Si surface barrier detectors was able to stop the α-particles, but not the protons.

(*) Work supported in part by INFN, CSFN/SM and CRRN/SM.

Fig. 1. — 4Li(7He, 2p) at 2.5 MeV a) $\theta_1 = 90^\circ$, $\theta_2 = 55^\circ$, b) $\theta_1 = 90^\circ$, $\theta_2 = 60^\circ$, c) $\theta_1 = 90^\circ$, $\theta_2 = 6.5^\circ$, d) $\theta_1 = 90^\circ$, $\theta_2 = 70^\circ$. Dashed lines: experimental data; shaded areas: estimated 7Li contribution.