The Weak Semi-Differentiability in Quantum Mechanics.

J. Pian and C. S. Sharma

Department of Mathematics, Birkbeck College
Malet Street, London, WC1E 7HX, England

(ricevuto il 12 Marzo 1984)

PACS. 03.65. – Quantum theory; quantum mechanics.

Summary. – The concept of weak semi-differentiability is strengthened by removing a defect from an earlier definition by Fonte and a serious weakness in the strengthened concept is demonstrated by a counter example.

Fonte (1) by developing further an idea originally due to Sharma and Rebelo (2) defined the concept of weak semi-differentiability on a complex Banach space. The purpose of this paper is to clarify and strengthen this concept in the new calculus on complex Banach spaces being developed by Fonte and co-workers (3,4) in Italy and Sharma and co-workers (5-7) in England.

We first point out that $E(T)$ of Fonte (see (1) p. 201) does not satisfy the requirement of being defined on an open set of a Banach space and hence does not satisfy one of the criteria of semi-differentiability. This $E(T)$ is defined to be $\langle \Psi | H | \Psi \rangle$ where H is a semi-bounded self-adjoint operator on a Hilbert space X. Since H is semi-bounded, it is unbounded and therefore cannot be defined on the whole of the Hilbert space. If H were defined on an open set, by linearity the domain (H) of H will be the whole of the Hilbert space which is impossible.

The following definition of weak semi-differentiability overcomes these objections and in this definition $E(T)$ is weakly semi-differentiable.

Definition (weak semi-differentiability). Let $D(f)$ be a subset of a complex Banach space X such that $D(f) = M \cap U$, where M is a dense vector subspace of X and U is an open subset of X. A function $f: D(f) \rightarrow Y$, where Y is another Banach space, is said to be weakly semi-differentiable at a point $u \in D(f)$, if there exists a bounded additive

map $f_u^{(aw)}$ from M to Y such that for any $h \in M$

$$\lim_{t \to 0} \frac{f(u + th) - f(u)}{t} = f_n^{(aw)}(h),$$

the map $f_u^{(aw)}$ if it exists is called the weak semi-derivative of f at u.

Remarks. 1) Let $u \in D(f)$. Since $D(f) = M \cap U$ for each $h \in M$, there exists a real number $\delta_h > 0$, such that $u + th \in D(f)$ for $|t| < \delta_h$.

2) M being dense in X, the map $f_u^{(aw)}$ can be uniquely extended by continuity to the whole of X: $f_u^{(aw)}$ can be, without loss of generality, identified with this extension.

3) When X is a Hilbert space and $Y = C$, by the Riesz representation theorem (see (2)) we can write

$$f_u^{(aw)} = \langle \cdot | g_1 \rangle + \langle g_2 | \cdot \rangle,$$

where g_1 and g_2 are fixed vectors in X.

4) Our definition does not require f to be continuous, but for a fixed element $u \in D(f)$ and a fixed $h \in M$, the map

$$g:]- \delta_h, \delta_h[\to Y$$

defined by

$$g(t) = f(u + th)$$

is continuous at $t = 0$, if $f_u^{(aw)}$ exists.

5) f need to be defined on an open set.

One major disadvantage of working with weak semi-differentiability is that for the stationary points of f, that is points $u \in X$ satisfying

$$f_u^{(aw)} = 0,$$

the following conditions on the second weak semi-derivative $f_u^{(2aw)}$:

$$f_u^{(2aw)}(h, h) \geq \mu \|h\|^2$$

for some $\mu > 0$ does not guarantee that f achieves a minimum at u, as can be easily seen from the following counter example.

Let (e_i) be an orthonormal basis in a Hilbert space X. Define a symmetric map B by

$$Be_i = ie_i.$$

Extend B by linearity to all finite linear combinations of the e_i's. Then $D(B)$ is a vector subspace dense in X. Now define

$$f: D(B) \to C$$