On the Decay Scheme of 47Ca (*).

E. Fuschini, V. Gadjakov (**), C. Maroni and P. Veronesi

Istituto di Fisica dell'Università - Bologna

(ricevuto il 25 Giugno 1963)

1. – Introduction.

As a preliminary measurement of an experimental test on time-reversal invariance in strong interactions, the mean life-times of the excited levels of 47Sc and the mixing ratio δ of the γ-transitions have been investigated.

47Sc is the daughter of 47Ca, whose decay scheme, as reported in the literature (1), is shown in Fig. 1.

The energies of the two coincident γ’s arc 480 and 830 keV, but the energy of the first excited state of 47Sc is unknown (2).

The subjects, that we have investigated, are:

a) the mean life-time of the excited levels of 47Sc,

b) which of the coincident γ’s is the first and which is the second,

c) the mixing ratio $\delta = E_2/M_1$ between the reduced matrix elements of the electric and magnetic transition in the γ_1 transition.

2. – The experiment.

a) The measurement of the lifetime of the excited levels of 47Sc has been performed with the usual method of the time-to-amplitude converter.

The converter has been calibrated by means of the "prompt" coincidence between the γ rays of a 66Co source. The sensitivity of our apparatus is of about $3 \cdot 10^{-10}$ s. The experimental results of 47Sc are within the sensitivity of the apparatus.

(*) This work was supported by EURATOM-CNEN contract.

(**) On leave from the Physics Department-Bulgarian Academy of Sciences, Sofia.

We conclude that the mean life-time of the two excited levels of ^{47}Sc are less than or equal to $3 \cdot 10^{-10}$ s.

b) The sufficiently short life-time of the excited levels of ^{47}Sc allows us to employ the angular correlations method to investigate the other questions. Firstly we have performed a directional angular correlation experiment.

The directional distribution function $W(\theta)$ is

\begin{equation}
W(\theta) = 1 + g_2 A_2 P_2(\cos \theta) + g_4 A_4 P_4(\cos \theta) + \ldots,
\end{equation}

where g_2, g_4 are geometrical attenuation coefficients.

In our geometry the calculated value of g_2 is $g_2 = 0.948$.

The experimental results of the angular correlation are presented in Fig. 2.

![Directional Distribution Function](image)

\[W(\theta) = 1 + g_2 A_2 P_2(\cos \theta) + g_4 A_4 P_4(\cos \theta) + \ldots, \]

where g_2, g_4 are geometrical attenuation coefficients.

In our geometry the calculated value of g_2 is $g_2 = 0.948$.

The experimental results of the angular correlation are presented in Fig. 2.

![Angular Correlation](image)

\[W(\theta) = 1 + g_2 A_2 P_2(\cos \theta) + g_4 A_4 P_4(\cos \theta) + \ldots, \]

where g_2, g_4 are geometrical attenuation coefficients.

In our geometry the calculated value of g_2 is $g_2 = 0.948$.

The experimental results of the angular correlation are presented in Fig. 2.

The best-fit of the data is consistent with $A_4 = 0$ and

\[A_2 = (-5.0 \pm 0.6) \cdot 10^{-2}. \]

It is noteworthy that the condition $A_4 = 0$ is consistent with the $\frac{3}{2}$ value of the spin of the first excited level of ^{47}Sc.

From the theory of angular correlation it is possible to calculate A_2 as a function of the mixing ratio δ. In Fig. 3 the behaviour of $A_2 = A_2(\delta)$ is shown.

![Theoretical Behaviour of A_2](image)

\[A_2(\delta) = \frac{\delta^2}{\pi^2} \sin^2 2\theta. \]

Taking into account the experimental value of A_2 the following values of δ are possible:

\[\delta = 0.21 \pm 0.04, \quad \delta < -24, \quad \delta > 34. \]

To establish which value of δ is to be chosen a measurement of the $\gamma_1\gamma_2$ polari-