
M. Nomura

Institute of Physics, College of General Education, University of Tokyo - Tokyo

(riccetto il 10 Gennaio 1970)

Recently, the perturbation treatment of like nucleons in a large shell has been developed (1) without explicit use of any c.f.p. (2). In this note we show that a similar treatment is possible to study the configuration mixing in the low-lying states of the s.c.s. (single-closed shell) nuclei expressed, in the zeroth-order approximation, by the configuration j^n with seniority v less than 3. Our study is essentially an application of reduction relations (1-3) about a square sum of c.f.p. over the additional quantum number. The result will provide a powerful physical insight, since all the quantities to evaluate will be shown in simple algebraic form which can be applied for any large spin j.

Let us consider the effect of the mixed configurations on the expectation values of a two-body interaction, noting that the diagonal matrix element of the unperturbed state with $j^v v < 2$ is expressed (4) in terms of two-body matrix elements only. For simplicity, we discuss only the configurations that differ by a single-nucleon orbit from the configuration j^n.

Firstly, we can show for the general v the following complete (so long as the additional quantum number is kept) reduction relations by use of the reduction relation (3) about

$$\sum \langle j^v v \varphi | j^v \varphi | j^v v \varphi >$$

(for simplicity, only the case of $j_1 \neq j$ is considered here):

$$\langle j^v v \varphi | V \varphi | j^v - 1 \varphi' j_1 j > = \frac{n - v}{2j + 1 - 2v} \sqrt{2j + 3 - n - v} \langle j^v v \varphi | V \varphi | j^v - 1 \varphi' j_1 j > +$$

$$+ \frac{2j + 1 - n - v}{2j + 1 - 2v} \sqrt{2j + 3 - n - v} \langle j^v v \varphi | V \varphi | j^v - 1 \varphi' j_1 j > ,$$

\begin{align}
(2) \quad \langle j^n v \alpha J | V | j^{n-1} (v + 1 \alpha' J') j_1 J \rangle &= \\
&= (-)^{l_1 + l'_1 - j_1 - j_2} \frac{2j + 1 - n - v}{2j - 1 - 2v} \sqrt{\frac{(J')(n - v)}{[J](2j + 1 - 2v)}} \langle j^{n+1} v + 1 \alpha' J' | V | j^n (v \alpha J) j_1 J' \rangle + \\
&\quad + (-)^{l_1 + l'_1 - j_1 - j_2} \frac{n - v - 2}{2j - 1 - 2v} \sqrt{\frac{(J')(n - v)}{[J](2j + 1 - 2v)}} \langle j^{n+1} v + 1 \alpha' J' | V | j^n (v \alpha J) j_1 J' \rangle ,
\end{align}

\begin{align}
(3) \quad \langle j^n v \alpha J | V | j^{n-1} (v - 3 \alpha' J') j_1 J \rangle &= \\
&= \sqrt{(n - v + 2)(2j + 3 - n - v)(2j + 5 - n - v)} \langle j^v v \alpha J | V | j^{n-1} (v - 3 \alpha' J') j_1 J \rangle ,
\end{align}

\begin{align}
(4) \quad \langle j^n v \alpha J | V | j^{n-1} (v + 3 \alpha' J') j_1 J \rangle &= \\
&= (-)^{l_1 + l'_1 - j_1 - j_2} \sqrt{(n - v - 2)(2j + 1 - n - v)} \langle j^{n+1} v + 3 \alpha' J' | V | j^{n+2} (v \alpha J) j_1 J' \rangle ,
\end{align}

Here, \([J] = 2J + 1\), the particle-hole interaction \(\bar{V}\) is defined by

\begin{align}
(5) \quad \bar{V}_J &= \langle j^2 J | \bar{V} | j_1 J \rangle = -2 \sum_K \begin{bmatrix} j & j & K \\ j & j_1 & J \end{bmatrix} \langle j^2 K | V | j j_1 K \rangle ,
\end{align}

with the antisymmetrized and normalized wave function \(|jj_1 J\rangle\), and we adopt the phase convention that is consistent with ref. (2). Note that matrix elements of \(V\) and \(\bar{V}\) satisfy

\begin{align}
(6) \quad \sum_J [J] \bar{V}_J^2 &= 2 \sum_J [J] V_J^2 - \sum_J [J] V_J \bar{V}_J ,
\end{align}

where \(J\) runs over even integers. Note also that the matrix element

\begin{align}
\langle j^{n-1} v \alpha J | V | j^n (v \alpha' J') j_1^{-1} J \rangle
\end{align}

is related to the left-hand side of (1)-(4) by

\begin{align}
(7) \quad \langle j^{n-1} v \alpha J | V | j^n (v' \alpha' J') j_1^{-1} J \rangle &= (-)^{l_1 + l'_1 - j_1 + 1} \sqrt{\frac{[J']}{[J]}} \langle j^n v' \alpha' J' | V | j^{n-1} (v \alpha J) j_1 J' \rangle .
\end{align}

We can show for the general \(v\) another type of reduction relations

\begin{align}
(8) \quad \langle j^n v \alpha J | V | j^n (v \alpha' J') j_1 J_0 J \rangle &= \frac{\langle j^n v \alpha J | \bar{U}^{(J_0)} | j^n v \alpha J \rangle}{\langle j^n v \alpha J | \bar{U}^{(J_0)} | j^n v \alpha J \rangle} \langle j^n v \alpha J | V | j^n (v \alpha' J') j_1 J_0 J \rangle
\end{align}