THE COMBINATORIAL STRUCTURE
OF (m, n)-CONVEX SETS

BY
Marilyn Breen

ABSTRACT
Let S be a closed subset of a Hausdorff linear topological space, S having no
isolated points, and let \(c_s(m) \) denote the largest integer \(n \) for which S is \((m,n)\)-
convex. If \(c_s(k) = 0 \) and \(c_s(k + 1) = 1 \), then

\[
c_s(m) = \sum_{i=1}^{k} \left(\frac{m + k - i}{k} \right)
\]

Moreover, if \(T \) is a minimal \(m \) subset of S, the combinatorial structure of \(T \) is
revealed.

1. Introduction
Throughout, the set \(S \) will be a subset of a Hausdorff linear topological space.
Employing the terminology used by Guay and Kay [2], for integers \(m, n \), we say
that \(S \) is \((m,n)\)-convex iff for each \(m \) distinct points of \(S \), at least \(n \) of the
\(\binom{m}{2} \) possible segments determined by these points are in \(S \). For convenience, when
\(1 \geq m \geq 0 \), we say \(S \) is \((m,0)\)-convex. Thus the definition of \((m,n)\)-convex is
meaningful for any \(m \geq 0 \) and for \(\binom{m}{2} \geq n \geq 0 \). A set \(S \) is exactly \((m,n)\)-
convex iff \(S \) is \((m,n)\)-convex, and not \((m,n + 1)\)-convex, and \(c_s(m) \) will denote the unique
integer \(n \) for which \(S \) is exactly \((m,n)\)-convex.

For notational purposes, \(\sigma(k, m) \) will represent the following summation:

\[
\sigma(k, m) = \sum_{i=1}^{k} \left(\frac{m + k - i}{k} \right)
\]

Received June 13, 1972 and in revised form March 20, 1973

367
Finally, we will make use of the following familiar definitions:

For x, y in S, we say x sees y via S iff the corresponding segment $[x, y]$ lies in S. A subset T of S is visually independent via S iff for every x, y in T, $x \neq y$, x does not see y via S.

2. A formula for $c_4(m)$

For S a closed (p, q)-convex set having no isolated points, $q \geq 1$, we are interested in the possible values which may be assumed by the sequence $(c_4(m): m \geq 2)$. Letting k denote the largest integer for which $c_4(k) = 0$, the following theorems reveal that $c_4(m)$ is uniquely determined by k for every m, and in fact $c_4(m) = \sigma(k, m)$.

Theorem 1. If S is a closed (m, n)-convex set, $n \geq 1$, then S is exactly $(m_0, 1)$-convex for some $m_0 \geq 2$.

Proof. Clearly S has at most j isolated points z_1, z_2, \cdots, z_j where $j < m$. Letting $T = S \sim \{z_1, \cdots, z_j\}$, T is $(m - j, n)$-convex. Let m_0 denote the smallest positive integer for which $c_4(m_0) > 0$. If T is convex, the result is trivial, so without loss of generality assume $m_0 = 3$. We will show that $c_4(m_0) = 1$. Since $c_4(m_0 - 1) = 0$, there is a visually independent subset $\{x_1, \cdots, x_{m_0 - 1}\}$ of T having $m_0 - 1$ members. Since x_1 is not an isolated point, there is an infinite net in $T \sim \{x_1\}$ converging to x_1. For some y in this net, $[y, x_i] \subseteq T$ for every $i, 1 < i \leq m_0 - 1$. (Otherwise, there would be a subnet converging to x_1, each point of which sees via S a particular x_{i_0}, and since T is closed, $[x_1, x_{i_0}]$ would lie in T, a contradiction.)

Thus $\{x_1, \cdots, x_{m_0 - 1}, y\}$ is a set with m_0 members for which only one of the corresponding segments lies in T. We conclude that $c_4(m_0) = 1$ and $c_4(m_0 + j) = 1$.

Remark. It is interesting to note that if S is not closed, the result fails. (See Example 1 of this paper.)

Theorem 2. Let S be a closed set having no isolated points and with $c_4(k) = 0$, $c_4(k + 1) = 1$ for some integer k. Then

$$c_4(m) \leq \sum_{i=1}^{k} \left(\left\lfloor \frac{m + k - i}{2} \right\rfloor \right) = \sigma(k, m)$$

for every integer $m \geq 0$.

Proof. We exhibit an m member subset of S having at most $\sigma(k, m)$ corre-