DOMINATED ESTIMATES OF CONVEX COMBINATIONS OF COMMUTING ISOMETRIES*

BY
JAMES OLSEN

ABSTRACT
The principal result of this paper is that the convex combination of two positive, invertible, commuting isometries of \(L_p(X, \mathcal{F}, \mu) \) for \(1 < p < +\infty \), one of which is periodic, admits a dominated estimate with constant \(p/p - 1 \). In establishing this, the following analogue of Linderholm's theorem is obtained: Let \(\sigma \) and \(\varepsilon \) be two commuting non-singular point transformations of a Lebesgue space with \(\tau \) periodic. Then given \(\varepsilon > 0 \), there exists a periodic non-singular point transformation \(\sigma' \) such that \(\sigma' \) commutes with \(\tau \) and \(\mu(\{x : \sigma'x \neq \sigma x\}) < \varepsilon \). By an approximation argument, the principal result is applied to the convex combination of two isometries of \(L_p(0,1) \) induced by point transformations of the form \(\tau x = x^k, k > 0 \) to show that such convex combinations admit a dominated estimate with constant \(p/p - 1 \).

1. Introduction

In what follows we assume \(p \) fixed, \(1 < p < +\infty \). Let \((X, \mathcal{F}, \mu) \) be a \(\sigma \)-finite measure space, and let \(T \) be a linear operator mapping \(L_p(X, \mathcal{F}, \mu) \) into \(L_p(X, \mathcal{F}, \mu) \). If there exists a constant \(c > 0 \) such that

\[
\sup_n \left(\int |f|^p, \left| \frac{f + Tf}{2} \right|^p, \ldots, \left| \frac{f + \cdots + T^{n-1}f}{n} \right|^p, \ldots \right) d\mu \leq c^p \int |f|^p d\mu
\]

for each \(f \in L_p(X, \mathcal{F}, \mu) \), then we say that \(T \) admits a dominated estimate with constant \(c \). If \(\| Tf \|_p = \| f \|_p \) for each \(f \in L_p(X, \mathcal{F}, \mu) \), then we say that \(T \) is an isometry. If \(T \) maps non-negative functions to non-negative functions, then we say that \(T \) is positive.

Our main result is that a convex combination of two positive, invertible, commuting isometries, one of which is periodic, admits of a dominated estimate with constant \(p/p - 1 \). To establish this, we will prove an analogue of Lin-

* Research supported in part by NSF Grant No. GP-7475. A portion of the contents of this paper is based on the author's doctoral dissertation written under the direction of Professor R. V. Chacon of the University of Minnesota.

Received April 20, 1971
derholm's Theorem to show that if τ_1 and τ_2 are commuting non-singular point transformations with τ_2 periodic (see Section 2 for definitions), then for every $\varepsilon > 0$, there exists a periodic non-singular point transformation τ_ε such that τ_ε commutes with τ_2 and $\mu\{x: \tau_\varepsilon x \neq \tau_1 x\} < \varepsilon$. In Section 3, we apply the principal result to show that a convex combination of isometries of $L_p(0,1)$ of the form $Tf(x) = f(x^k) \cdot (kx^{k-1})^{1/p}$ admits of a dominated estimate with constant $p/p - 1$.

2. An analogue of Linderholm's theorem

In this section we will assume that (X, \mathcal{F}, μ) is a Lebesgue space, i.e., that it is separable, complete, non-atomic, and $\mu(X) = 1$. Let τ be a point transformation of X into itself. If τ is one-to-one, measurable in the sense that $\tau A \in \mathcal{F}$ if and only if $A \in \mathcal{F}$, and if $\mu(\tau A) = 0$ if and only if $\mu(A) = 0$, we say that τ is non-singular. If there exists an integer N such that for almost all $x \in X$ we have $\tau^N x = x$, we say that τ is periodic. If there exists an integer n such that for almost all x belonging to a set A we have $\tau^n x = x$, where n is the least such integer, we say that τ has period n on A.

The main result of this section is the following:

THEOREM 2.1. Let τ and σ be two non-singular point transformations of the Lebesgue space (X, \mathcal{F}, μ) with τ periodic. Then given $\varepsilon > 0$, there exists a periodic non-singular point transformation σ^1 of (X, \mathcal{F}, μ) such that σ^1 commutes with τ and

$$\mu\{x: \sigma^1 x \neq \sigma x\} < \varepsilon.$$

This is a generalization of Linderholm's approximation theorem:

LINDERHOLM'S APPROXIMATION THEOREM. Let σ be a non-singular point transformation of the Lebesgue space (X, \mathcal{F}, μ) and let $\varepsilon > 0$. Then there exists a periodic point transformation τ such that

$$\mu\{x: \tau x \neq \sigma x\} < \varepsilon.$$

In [3], p. 71, there is a proof of this theorem in the measure preserving case that is easily adaptable to the non-singular case.

The bulk of the proof of Theorem 2.1 is contained in the following three lemmas.

LEMMA 2.1. Let τ and σ be two commuting non-singular point transformations of the Lebesgue space (X, \mathcal{F}, μ) such that τ is periodic with period n and σ is anti-periodic. Then for every integer m, there exists a measurable set A of positive measure such that the sets