SETS WITH A MODE

BY

GEORGE CONVERSE

ABSTRACT

Let \(M \) be a point and \(S \) be a compact set in \(\mathbb{R}^2 \) such that \(S \) is the closure of its interior. The theorem desired says that if \(M \) is a mode of \(S \) then \(S \) is convex and centrally symmetric with respect to \(M \). Some conditions on the boundary of \(S \) are needed for the proof given.

Throughout this paper \(S \) will be a nonempty compact subset of \(\mathbb{R}^2 \) which is the closure of its interior and \(M \) will be a mode of \(S \) (defined below). In their paper Dharmadhikari and Jogdeo [1] prove that \(S \) is convex and hence centrally symmetric with respect to \(M \) provided \(S \) has Jordan polygonal boundary. The aim of this paper is to replace the condition of a Jordan polygonal boundary with a condition satisfied by all compact convex sets. The condition for this paper is that the boundary of \(S \) will consist of a finite number of acceptable closed curves (defined below) which meet in at most a finite number of points.

DEFINITIONS. For any real number \(t \) and any unit vector \(u \) in \(\mathbb{R}^2 \), let \(L(u, t) \) be the line

\[\{ z \in \mathbb{R}^2 : \langle u, z - M \rangle = t \} \]

and \(m \) be Lebesgue measure on the line. \(M \) is a mode of \(S \) if, for each \(u \), \(m(L(u, t) \cap S) \) is a nonincreasing function of \(t \) for \(t \geq 0 \) and a nondecreasing function of \(t \) for \(t \leq 0 \).

A curve is an acceptable closed curve if there is a homeomorphism \(f \) of the unit circle ([0, 2\(\pi \]) with 0 and 2\(\pi \) identified) onto the curve such that \(f \) has a nonzero left derivative \(f'_L \) everywhere on \((0, 2\pi]\), \(f \) has a nonzero right derivative \(f'_R \) everywhere on \([0, 2\pi)\), \(f'_L \) is continuous from the left, \(f'_R \) is continuous from the right and \(f'_L = f'_R = f' \) except for at most a countable number of points.

The purpose of this paper is to prove the following

Received December 15, 1975 and in revised form August 26, 1976
THEOREM. Let S be a nonempty compact subset of \mathbb{R}^2 which is the closure of its interior. Suppose S has a mode M and the boundary of S consists of a finite number of acceptable closed curves which meet in at most a finite number of points. Then S is convex and centrally symmetric with respect to M.

Before proceeding with the proof, there are a few consequences of the condition on the boundary of S that should be noted to give a more geometric idea of what an acceptable closed curve is and how the condition will be used. First the existence of nonzero left and right derivatives at a point imply the existence of tangent rays at that point. If $f' = f'$ the tangent rays are the two opposite rays of the tangent line.

Second, if f is the homeomorphism guaranteed by the definition, then

$$f(b) - f(a) = \int_a^b f'(x)dx, \quad 0 \leq a < b \leq 2\pi.$$

This may be concluded from exercise 18:41d in Hewitt and Stromberg [2] or from 8:11 (or the proof of 8:21) in Rudin [6].

Third, the image of f has finite length given by, for example, $\int_0^{2\pi} |f'(x)| dx$ [3, p. 36]. Thus the boundary of S has finite length. No precise definition of length will be needed but elementary calculus such as Purcell 16:4 [4] will be used as will the fact that if one side of a rectangle intersects S in a length l greater than the opposite side then the length of the boundary of S inside the rectangle is at least l.

Finally, it follows from general knowledge (or [5, 24.1]) that the boundary of a compact convex set with nonempty interior is an acceptable closed curve. The proof of the Theorem now follows with some notation and a sequence of lemmas.

NOTATION. For any angle t, let

$$R(t) = \{x \in \mathbb{R}^2 : x = M + a(\cos t, \sin t), a > 0\}.$$

If x in the boundary of S has a tangent line denote it by $T(x)$. If $x \neq y$, let (x, y) be the open line segment between x and y. If an endpoint is to be included, a square bracket will replace the appropriate parenthesis. Let ∂S denote the boundary of S and d be Euclidean distance in \mathbb{R}^2.

LEMMA 1. $m\{t \in [0, 2\pi] : R(t) \subset T(x) \text{ for some } x \in \partial S\} = 0$.

PROOF. For any t in $(0, 2\pi)$, let $s(t)$ be the length of the boundary of S within the angle from $R(0)$ to $R(t)$. Then s is a monotone increasing function so