HOW OFTEN IS A POLYGON BOUNDED BY THREE SIDES?

BY
R. C. ENTRINGER AND G. B. PURDY

ABSTRACT
Let \(L_n \) be the set of lines (no two parallel) determining an \(n \)-sided bounded face \(F \) in the Euclidean plane. We show that the number, \(f(L_n) \), of triples from \(L_n \) that determine a triangle containing \(F \) satisfies

\[
n - 2 \leq f(L_n) \leq \frac{n}{6} \left[\frac{n^2 - 1}{4} \right]
\]

and these bounds are best. This result is generalized to \(d \)-dimensional Euclidean space (without the claim that the upper bound is attainable).

1. Introduction and notation

Let \(L_n \) be a set of \(n \geq 3 \) lines in general position in the Euclidean plane such that some bounded face \(F \) determined by \(L_n \) is \(n \)-sided. We let \(f(L_n) \) be the number of triples of lines of \(L_n \) that form a triangle containing \(F \) and will prove the following result in the third section:

Theorem 1.

\[
n - 2 \leq f(L_n) \leq \frac{n}{6} \left[\frac{n^2 - 1}{4} \right]
\]

and these bounds are best.

Our proof of this result will involve the consideration of certain properties of a set \(P \) of points \(p_i, 1 \leq i \leq m \), in general position on a circle \(S \) (no two antipodal). Each pair of distinct points \(p_i \) and \(p_j \) determine two arcs of \(S \): the “arc \(p_ip_j \)” will mean the smaller of these and we refer to the set of all such smaller arcs as “the arcs of \(P \”). A triple of points of \(P \) not contained in any semicircle of \(S \) will be called a central triple (since the triangle formed by these points contains the center of \(S \)). The point of \(S \) antipodal to \(p_i \) will be denoted by \(p'_i, 1 \leq i \leq n \). We note that a triple \(\{p_i, p_j, p_k\} \) is central iff the arc \(p_ip_k \) contains \(p'_i \).

Received December 20, 1981
2. Some properties of points on a circle

Lemma 1. Let P be a set of points $p_i, 1 \leq i \leq n$, in general position on a circle S.

(i) The union of the arcs of P is S or is contained in a semicircle of S.

(ii) If one point of P is a member of a central triple then each point is.

(iii) If every three points of P are contained in a semicircle of S then they all are.

Proof.

(i) If the union of the arcs of P is not S it is an arc C with endpoints p_i and p_j, say. The arc p_ip_j is either $S-C$ or C; in either case we are done.

(ii) If some point p_i is not a member of any central triple then the antipodal point p'_i cannot lie on any arc of P and so by (i) all points of P lie in a semicircle. But then no point of P is a member of a central triple.

(iii) The point p_i is not a member of a central triple so that p'_i does not lie in any arc of P. By (i) some semicircle of S contains all points of P.

Lemma 2. Let P_n be a set of points $p_i, 1 \leq i \leq n$, $n \geq 3$, in general position on a circle S and let $g(P_n)$ be the number of central triples of members of P_n. Then, if $g(P_n) > 0$, we have

$$n - 2 \leq g(P_n) \leq \frac{n}{6} \left[\frac{n^2 - 1}{4} \right]$$

and these bounds are best.

Proof. Let x_i and y_i be the numbers of points $p_i \neq p_j$ in the two semicircles of S with endpoint p_i. Then $x_i + y_i = n - 1$ and the number of triples not central is

$$\left(\begin{array}{c} n \cr 3 \end{array} \right) - g(P_n) = \frac{1}{2} \sum_{i=1}^{n} \left[\left(\begin{array}{c} x_i \cr 2 \end{array} \right) + \left(\begin{array}{c} y_i \cr 2 \end{array} \right) \right] = -\frac{1}{2} \left(\begin{array}{c} n \cr 2 \end{array} \right) + \frac{1}{4} \sum_{i=1}^{n} (x_i^2 + y_i^2)$$

so that

$$g(P_n) \leq \left(\begin{array}{c} n \cr 3 \end{array} \right) + \frac{1}{2} \left(\begin{array}{c} n \cr 2 \end{array} \right) - \frac{1}{4} \left[\begin{array}{l} 2n \left(\frac{n-1}{2} \right)^2, \text{ n odd} \\
 \left(\begin{array}{c} n \cr 4 \end{array} \right) (\frac{n^2}{4} + \frac{n-2}{4})^2, \text{ n even} \end{array} \right]$$

so that

$$g(P_n) \leq \left\{ \begin{array}{l} \frac{n(n^2-1)}{24}, \text{ n odd} \\
 \frac{n(n^2-4)}{24}, \text{ n even} \end{array} \right\} = \frac{n}{6} \left[\frac{n^2 - 1}{4} \right].$$