A REMARK ON MUMFORD'S COMPACTNESS THEOREM

BY
LIPMAN BERS

ABSTRACT

It is shown that a recent compactness theorem for Fuchsian groups, due to Mumford, remains valid for groups containing elliptic and parabolic elements.

A Fuchsian group Γ is a discrete subgroup of the real Möbius group $G = SL(2, \mathbb{R})/\{ \pm I \}$. We will establish the following extension of a recent result by Mumford.

THEOREM 1. The set of conjugacy classes $[\Gamma]$ of Fuchsian groups Γ, such that $\mathrm{mes}(G/\Gamma) \leq \mu < \infty$ and the absolute value of the trace of every hyperbolic element γ of Γ is $\geq 2 + \epsilon > 2$, is compact.

We recall that Fuchsian groups Γ with $\mathrm{mes}(G/\Gamma) < \infty$ are finitely generated. Hence the space of conjugacy classes $[\Gamma]$ of all such groups has a natural topology: a (distinguished) neighborhood V of Γ is determined by a sequence $\{\gamma_1, \cdots, \gamma_r\}$ of generators of Γ and a neighborhood v of the identity in G; a conjugacy class $[\Gamma']$ belong to V if and only if there is an isomorphism χ of Γ onto a $\Gamma'' \in [\Gamma']$ such that $\chi(\gamma)$ is parabolic if and only if γ is, and $\chi(\gamma_j) \circ \gamma_j^{-1} \in v$ for $j = 1, \cdots, r$.

In [5] Mumford proved a general compactness theorem and obtained, as a corollary, a statement analogous to Theorem 1, under the additional hypotheses that all groups Γ considered are torsion free and all quotients G/Γ are compact. He stated that the corollary can be obtained by an elementary argument. Our proof of Theorem 1 is an extension of this argument.

† Work partially supported by the National Science Foundation.

Received June 15, 1972.

400
A Fuchsian group Γ acts on the upper half plane U as a group of conformal automorphisms; the condition $\text{mes}(G/\Gamma) \leq \mu$ is equivalent to the condition $\int_{U/\Gamma} y^{-2} \, dx \, dy \leq c\mu$ where c is a universal constant. Every group Γ satisfying this condition has a signature

\begin{equation}
\sigma = (p, n; v_1, \ldots, v_n)
\end{equation}

where p and n are integers, the v_j are integers or the symbol ∞, and

\begin{equation}
p \geq 0, \quad n \geq 0, \quad 2 \leq v_1 \leq v_2 \leq \cdots \leq v_n \leq \infty,
\end{equation}

\begin{align*}
A(\sigma) = 2\pi(2p - 2 + n - \frac{1}{v_1} - \cdots - \frac{1}{v_n}) &> 0.
\end{align*}

We have that $\int_{U/\Gamma} y^{-2} \, dx \, dy = A(\sigma)$, the Riemann surface U/Γ is a compact surface of genus p with n_∞ points removed, n_∞ being the number of times ∞ occurs among the symbols v_1, \ldots, v_n, and Γ has precisely n non-conjugate in Γ maximal cyclic elliptic or parabolic subgroups, the order of these subgroups being v_1, \ldots, v_n. Note that U/Γ is compact if and only if G/Γ is, and if and only if $n = 0$ or $v_n < \infty$; we call such signatures of compact type.

A Fuchsian group with signature (1) is said to represent the configuration

\begin{equation}
\Sigma = (S; P_1, \ldots, P_n)
\end{equation}

where S is a compact Riemann surface of genus p and P_1, \ldots, P_n are distinct points on S, if there is a conformal bijection $f: U/\Gamma \to S - \{P_{n-n_\infty+1}, \ldots, P_n\}$ such that $f^{-1}(P_j)$ is the image under $U \to U/\Gamma$ of a point $z_j \in U$ fixed under a maximal cyclic subgroup of Γ of order v_j, $j = 1, \ldots, n - n_\infty$. The group determines the configuration Σ except for a conformal equivalence and a permutation of the "ramification points" P_j in which each P_i is taken into P_k with $v_i = v_k$. Conversely, given σ and Σ, satisfying (1), (2) and (3), there is a Fuchsian group Γ of signature σ, determined up to conjugacy in G, which represents Σ. This is the limit circle theorem of Klein and Poincaré.

We denote by $X(\sigma)$ the set of conjugacy classes $[\Gamma]$ of Fuchsian groups Γ with signature σ. (If $\sigma = (p, 0)$ $p > 1$, then $X(\sigma)$ is the space of moduli of compact Riemann surfaces at genus p.) One verifies, for instance by using quasiconformal mappings, that the spaces $X(\sigma)$, with their natural topologies, are metrizable. More precisely, the topology of $X(\sigma)$ can be derived from the Teichmüller metric defined as follows: the distance between $[\Gamma]$ and $[\Gamma']$ is the smallest number α