NOTE ON A PAPER OF B. GRÜNBAUM ON ACYCLIC COLORINGS

BY
GERD WEGNER

ABSTRACT
The aim of this short note is to improve some recent results of B. Grünbaum by some remarks. We use Grünbaum's notations.

1.
Grünbaum gives an example of a planar graph with 14 vertices which is not (1,3)-colorable and mentions that this is the smallest known planar graph having this property. It is easy to verify that the graph G_1 in Fig. 1 below with 11 vertices is also not (1,3)-colorable. It may be shown that 11 is the minimum number of vertices (obviously one has to check only maximal planar graphs without vertices of degree 3 and there are only 20 such graphs with less than 11 vertices).

Received August 31, 1972
The graph G_2 shown in Fig. 2 is not $(1,1,2)$-colorable, thus giving an affirmative answer to a conjecture of Grünbaum (compare remark (4) in [1]). G_2 contains as subgraphs a 4-clique and six copies of G_3 (see Fig. 3) combined in such a manner that each pair of vertices of the 4-clique is the basis pair of vertices of a copy of G_3. G_3 is a subgraph of the graph of Fig. 8 of [1] and has the property that any 4-coloring of G_3 yields a 4-circuit C 2-colored with the colors of the basis vertices u, v of G_3 (C does not necessarily contain both vertices u, v themselves). Now it is obvious that G_2 is not $(1,1,2)$-colorable.