Study of the 32S(\(\tau, d\))33Cl and $^{32-33}$S(\(\tau, \alpha\))$^{31-32}$S Reactions (*).

G. Inglima, R. Caracciolo, P. Cuzzocrea, E. Perillo, M. Sandoli and G. Spadaccini

Istituto di Fisica Sperimentale dell'Università - Napoli
Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

(ricevuto il 7 Giugno 1974; manoscritto revisionato ricevuto il 7 Novembre 1974)

Summary. — The reactions 32S(\(\tau, d\))33Cl and $^{32-33}$S(\(\tau, \alpha\))$^{31-32}$S have been studied at 10.4 MeV incident energy. Absolute differential cross-sections have been measured and angular distributions have been analysed in terms of the distorted-wave Born approximation. Good agreement is obtained between experimental S-factors from the reactions on 32S and the results of recent theoretical calculations, while S-factors from the 33S(\(\tau, \alpha\))32S reaction are found to be considerably larger. The use of the (\(\tau, \alpha\)) reactions to obtain spectroscopic information and its DWBA analysis are examined and the accuracy of the extracted S-factors discussed.

1. — Introduction.

In the last years there was a considerable interest about nuclei in the (s-d)-shell, both from the theoretical and the experimental point of view. Studies of the properties of these nuclei were carried out with shell model methods, involving an inert 28Si core with active $s_{\frac{1}{2}}$ and $d_{\frac{3}{2}}$ orbits, then worked out to include $d_{\frac{5}{2}}$-states too (1,2). Also, an intermediate-coupling vibrational model has been presented (3), in which quasi-particles and anharmonic core effects are taken into account.

(*) To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Fig. 1 - Energy spectrum from the $^{38}S(r, d)^{37}Cl$ reaction. $E_d = 10.4$ MeV, $\theta_r = 27^\circ$.

channel number

counts/channel