The Search for High-Energy Deuterons in the $^3\text{He}+^3\text{He}$ Reaction (*).

R. PIGEON (**) and R. J. SLOBODRIAN

Laboratoire de Physique Nucléaire, Département de Physique
Université Laval - Québec, P.Q., Canada, G1K 7P4

(ricevuto il 14 Marzo 1979)

Summary. — High-energy deuterons have been detected from the $^3\text{He}+^3\text{He}$ reaction with a system sensitive to cross-sections of 0.6 nb sr$^{-1}$. Several tests have permitted to evaluate the small contribution of spurious events. The deuterons are kinematically consistent with the reaction $^3\text{He}+^3\text{He} \rightarrow ^2\text{H}+d\text{He}+e^++\nu$, but the measured cross-section at 20$^\circ$ laboratory is too high for a weak-interaction process: (1.3 ± 0.3) nb sr$^{-1}$. It might be due to an interaction of intermediate strength causing the decay of pp pairs (^3He) into deuterons. Other alternatives and the implications concerning fusion processes and the production of neutrinos in the Sun are discussed in the text.

1. — Introduction.

The generation of elements in stars begins with the formation of deuterons resulting from the reaction of two protons

$$H(p, e^+\nu)^2\text{H}, \quad Q_\beta = 0.420 \text{ MeV}. \quad (1)$$

At the temperature in the centre of the Sun ($\approx 15 \cdot 10^6$ K), the relative energies of the protons are of the order of one keV. The reaction rate is the result (1) of the tunnelling of charged particles, from the high-energy tail of a Maxwellian

(*) To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

(**) In partial fulfilment of the requirements for the DSc degree.

velocity distribution, through a much higher Coulomb barrier ($\simeq 0.5 \text{ MeV}$). The cross-section at the most effective energy, or Gamow peak, of $6 (\text{keV})^2$ is estimated to be $\sim 10^{-26} \text{b}$ (2_2), a measurement which is beyond the present-day experimental capabilities. One could, however, look for an alternative way of studying the pp reaction. This is possible, for example, by an investigation of the reaction $^3\text{He}(^3\text{He}, ^2\text{He})^4\text{He}$, where two protons are produced at low relative momenta within the range of nuclear forces.

A first report on the study of this reaction has been published previously (4). The conclusions of the investigation were: 1) the experimental spectra are consistent with the production of high-energy deuterons according to the reaction

$$^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + ^2\text{H} + e^+ + \nu, \quad Q = 13.28 \text{ MeV};$$

2) this result indicates that the pp reaction might proceed at a higher rate than has been calculated, consequently explaining the reduced production of high-energy neutrinos from the Sun (4).

A second experiment (5) was carried out to verify, whether other processes might yield deuterons; it covered the possible contributions from a ($^1\text{H}, ^3\text{H}$) reaction, an (elastic $^3\text{He}, ^2\text{H}$) reaction and a ($^2\text{H}, ^2\text{H}$) reaction induced by tritons produced on the Havar entrance foil of the gas cell. According to Newman and Fowler (6), there is little reason to expect reaction (2) to behave differently from similar β-decays, and a solar model compatible with solar luminosity and radius does not permit a large enhancement factor of the p-p rate. Davies et al. (7) searched for deuterons from $^3\text{He} + ^3\text{He}$ collision in two experiments. The first with a three-counter telescope and an $25 \text{MeV} \hspace{1mm} ^3\text{He}^+$ beam resulted in an upper limit of $0.2 \text{ nb (MeV)}^{-1} \text{sr}^{-1}$. The second experiment used a quadrupole-triple-dipole magnetic spectrometer and a beam of $15 \text{ MeV} \hspace{1mm} ^3\text{He}^+$ ions, the cross-sections of the spectrum divided in four ranges were lower

($) Comments concerning ref. (7): 1) There is a discrepancy between the third cross-section of null value on p. 1122 and the resultant number of counts [2] estimated from the third spectrum in fig. 2b) (iii). 2) On the same page, the factor 20 compares the $3.4 \text{nb (MeV)}^{-1} \text{sr}^{-1}$ cross-section value with their measured values and not with their upper limits. 3) Error bars for sections of a spectrum are less advantageous than the error bar for the counts of an integrated spectrum. The uncertainty in energy is not a relevant information in order to establish the phenomenon under study.