ON \(p \)-ABSOLUTELY SUMMING CONSTANTS OF BANACH SPACES*

BY

YEHORAM GORDON

ABSTRACT

Given \(1 \leq p < \infty \) and a real Banach space \(X \), we define the \(p \)-absolutely summing constant \(\mu_p(X) \) as

\[
\inf \{ \sup \{ \sum_{i=1}^{m} |x^*(x_i)|^p / \sum_{i=1}^{m} \|x_i\|^p \} \},
\]

where the supremum ranges over \(\{x^* \in X^*; \|x^*\| \leq 1 \} \) and the infimum is taken over all sets \(\{x_1, x_2, \ldots, x_m\} \subseteq X \) such that \(\sum_{i=1}^{m} \|x_i\| > 0 \). It follows immediately from [2] that \(\mu_p(X) > 0 \) if and only if \(X \) is finite dimensional. In this paper we find the exact values of \(\mu_p(X) \) for various spaces, and obtain some asymptotic estimates of \(\mu_p(X) \) for general finite dimensional Banach spaces.

1. Preliminaries and definitions. The results obtained here are in part related to those in [3]. We recall briefly some basic definitions: the projection constant of a Banach space \(X \) is defined as \(\lambda(X) = \inf \{ \lambda > 0; \text{from every Banach space } Y \supset X, \text{there is a projection onto } X \text{ with norm } \leq \lambda \} \). The Macphail constant is defined as \(\mu(X) = \inf \{ \sup_{J} \| \sum_{j \in J} x_j \| / \sum_{j \in J} \| x_j \| \}, \) where \(J \) ranges on the subsets of \(\{1, 2, \ldots, m\} \), and the infimum is taken over all finite sets \(\{x_1, x_2, \ldots, x_m\} \subseteq X \) such that \(\sum_{j=1}^{m} \|x_j\| > 0 \). The distance \(d(X, Y) \) between isomorphic Banach spaces \(X \) and \(Y \) is defined as \(\inf \{ \| T \| \| T^{-1} \| ; T \text{ is an isomorphism of } X \text{ onto } Y \} \).

\(l_n^p (1 \leq p < \infty) \) denotes the space of real \(n \)-tuples \(x = (x_1, x_2, \ldots, x_n) \) with the norm \(\| x \|_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p} \); \(l_n^{\infty} \) denotes the same space with the norm \(\| x \|_{\infty} = \max |x_i| \). All the asymptotic values of \(\mu(l_n^p) \), \(\lambda(l_n^p) \), \(d(l_n^p, l_m^q) (1 \leq p, q \leq \infty) \) are now known (see [3] for a short summary).

2. Formulation of results. We state here the main results which are to be proved.

Received March 28, 1969, additions received June 11, 1969.

* This is a part of the author's Ph.D. Thesis prepared at the Hebrew University of Jerusalem, under the supervision of Prof. A. Dvoretzky and Prof. J. Lindenstrauss.
THEOREM 1. Given a Banach space X, let K^* be the ω^* closure of the set of all the extremal points of the unit ball of X^*. For any $1 \leq p < \infty$, there is a probability measure (i.e. a regular non-negative Borel measure with total mass 1) ν over K^*, such that

$\mu_p(X) = \inf_{\|x\| = 1} \left(\int_{K^*} |x^*(x)|^p d\nu(x^*) \right)^{1/p}$. \hfill (1)

Moreover, for every probability measure θ over K^* and every $1 \leq p < \infty$, the following inequality holds

$\mu_p(X) \geq \inf_{\|x\| = 1} \left(\int_{K^*} |x^*(x)|^p d\theta(x^*) \right)^{1/p}$. \hfill (2)

THEOREM 2. If $1 \leq p < \infty$, then

$\mu_p(l_2^n) = n^{-1/p}$, \hfill (3)

$\mu_p(l_1^n) = \left[\frac{\Gamma(n/2)\Gamma(p/2 + 1/2)}{\Gamma(1/2)\Gamma(n/2 + p/2)} \right]^{1/p}$, \hfill (4)

$\mu_p(l_\infty^n) = \left[2^{-n} n^{-p} \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) |n - 2k|^p \right]^{1/p}$, \hfill (5)

$\mu_p(G_{2n}) = \left[(2n)^{-1} \sum_{i=0}^{2n-1} \left| \cos(i\pi/n) \right|^p \right]^{1/p}$, \hfill (6)

where G_{2n} is the space whose unit ball is the affine-regular $2n$-sided polygon in the Minkowsky plane.

THEOREM 3. Let X be an n-dimensional real Banach space, then

$\mu_p(X) \leq n^{-1/4}$, if $1 \leq p \leq 2$, \hfill (7)

$\mu_p(X) \leq c_p n^{-1/(2+p)}$, if $2 \leq p < \infty$, \hfill (8)

$\mu_p(X) \mu_p(X^*) \leq c_p n^{-2/3}$, if $1 \leq p \leq 2$, \hfill (9)

$\mu_p(X) \mu_p(X^*) \leq c_p n^{-4/(4+p)}$, if $2 \leq p \leq 4$, \hfill (10)

$\mu_p(X) \mu_p(X^*) \leq c_p n^{-1/2}$, if $4 \leq p < \infty$, \hfill (11)

(c_p denotes a constant depending only on p).

THEOREM 4. Let X be an n-dimensional real Banach space, and K_G the universal Grothendieck constant ($\pi/2 \leq K_G \leq \sinh(\pi/2)$). Then