ELEMENTS OF REDUCED TRACE 0

BY

S. A. AMITSUR

Department of Mathematics
The Hebrew University of Jerusalem, Jerusalem 91904, Israel

AND

LOUIS H. ROWEN

Department of Mathematics
Bar-Ilan University, Ramat-Gan 52900, Israel

ABSTRACT

Every element r of reduced trace 0 in a simple finite dimensional algebra R is a sum of at most 2 commutators. If R is not a division ring then r is a commutator, unless r is a scalar (in which case char(R) ≠ 0). The method of proof provides a generic division algebra of transcendence degree n² - 1.

Introduction

Throughout this paper R is a finite dimensional central simple algebra, with center F. Then R ⊗₁ F ≃ Mₙ(F) where F is the algebraic closure of F, and the reduced trace of an element r in R is defined as the trace of the matrix corresponding to r ⊗ 1 in Mₙ(F). Thus for any commutator r = [a, b] = ab - ba we have tr(r) = 0, and we address the converse question

QUESTION 1: If tr(r) = 0 then is r a commutator?

This is obvious for R = F (since then tr(r) = r), and is also true for R = Mₙ(F), cf. [6],[2]. Although the answer is unknown in general, there are various positive results, including for n = 2, 3 (Theorem 0.10). Also it turns out in general that r is a sum of at most two commutators, and we prove a slightly stronger fact. Actually there are two proofs, one of which involves Brauer factor

Received February 15, 1993

161
sets (§3) and yields considerable extra information about generic matrix algebras, which we include as an appendix at the end.

We cannot yet answer Question 1 for a division algebra D, and its general answer seems to rely on properties of quadratic forms. We do have an affirmative answer for $R = M_n(D)$ whenever $n > 1$, unless the matrix is scalar and n is prime to the characteristic of F. The proof is rather intricate, utilizing the other results of this paper, so we give a weakened result first (Theorem 1.10) and then the full result in section 2. The case where the matrix is scalar but n is prime to $p = \deg D = \text{char}(F)$ is particularly intransigent, and is discussed separately.

The results of section 1 contain some facts concerning normal forms of matrices which might be of independent interest.

0. Some easy special cases

Remark 0.1: If $ac = ca$ then $[a, bc] = [a, b]c$ and $[a, cb] = c[a, b]$.

Remark 0.2: The difference of any element b and any conjugate of b is a commutator. Indeed

$$aba^{-1} - b = [a, b]a^{-1} = [a, ba^{-1}].$$

Conversely, writing $b = ca^{-1}$ we see $[a, b] = aca^{-1} - c$. Thus every commutator is a difference of conjugates, so Question 1 is equivalent to: if $\text{tr}(r) = 0$ then is r a difference of two conjugates? Viewed in this way the question has a rather easy answer in several special cases.

PROPOSITION 0.3: Suppose K/F is a cyclic field extension with $K \subset R$. Then any element r of K having trace 0 (with respect to the field extension) is a commutator in R.

Proof: Write $r = \sigma(b) - b$ for suitable b in K, by the additive form of Hilbert's theorem 90. Then there is invertible a in R such that $\sigma(b) = aba^{-1}$, so

$$r = \sigma(b) - b = aba^{-1} - b = [a, ba^{-1}]$$

by Remark 0.2. □

Note: If $\alpha = \text{tr}_{K/F} r$ then $\text{tr} r = \frac{n}{[K:F]} \alpha$; thus if K is a maximal subfield or more generally if $\text{char}(F) \nmid [K:F]$ then $\text{tr}_{K/F} r = 0$ is equivalent to $\text{tr} r = 0$. On the other hand, we have