LOCAL DIMENSION-FREE ESTIMATES FOR VOLUMES OF SUBLEVEL SETS OF ANALYTIC FUNCTIONS*

BY

F. NAZAROV

Department of Mathematics, Michigan State University
East Lansing, MI 48824, USA
e-mail: fedja@math.msu.edu

AND

M. SODIN

School of Mathematical Sciences, Tel Aviv University
Ramat Aviv, 69978, Israel
e-mail: sodin@post.tau.ac.il

AND

A. VOLBERG

Department of Mathematics, Michigan State University
East Lansing, MI 48824, USA
e-mail: volberg@math.msu.edu

ABSTRACT

We derive sufficiently sharp local dimension-free estimates for volumes of sublevel sets of analytic functions in the unit ball of \mathbb{C}^n.

* The research was partially supported by the United States–Israel Binational Science Foundation.
Received November 5, 2001
1. Introduction and result

Let F be a non-constant real-analytic function in the unit ball in \mathbb{R}^n. We are interested here in dimensionless estimates of the size of sub- and super-level sets \{ $x : |F(x)| \leq t$ \}. To simplify the problem and avoid dependence on the domain of analyticity of F, we assume that F is analytic in the complex unit ball in \mathbb{C}^n.

We denote complex balls \{ $z \in \mathbb{C}^n : |z - w| < r$ \} by $B_c(w, r)$, and real balls \{ $x \in \mathbb{R}^n : |x - u| < r$ \} by $B(u, r)$. For any real ball B, we denote by Vol_B the normalized volume

$$\text{Vol}_B(E) = \frac{\text{Vol}(B \cap E)}{\text{Vol}(B)}.$$

Let F be a non-constant analytic function in $B_c(0, 1)$, and let $B \subset B(0, 1 - \varepsilon)$ be a real ball. We look for the upper bounds for the distribution functions $t \mapsto \text{Vol}_B\{|F| \leq tM_B(F)\}$ ($t < 1$), and $t \mapsto \text{Vol}_B\{|F| \geq tM_B(F)\}$ ($t > 1$). The quantity $M_B(F)$ normalizes the distribution function of $|F|$ in B. We would like to keep our estimates dimensionless and universal: their right-hand sides should depend on a global “degree” d_F of F in the complex unit ball, and on the distance ε from the ball B to the unit sphere, but should not depend on the number of variables n, and on the choice of the ball B.

The choice of the degree

$$d_F = \log \sup_{B_c(0, 1)} \frac{|F|}{|F(0)|}$$

is suggested by the one-dimensional case when local bounds follow from the classical Cartan lemma [L]. A traditional statistical normalization of the distribution function uses the median, that is, a number $m_B(F)$ such that

$$\text{Vol}_B\{|F| \geq m_B(F)\} = \frac{1}{2}.$$

To make the constants simpler, we choose for the normalization the e^{-1}-quantile, that is, a number $M_B(F)$ such that

$$\text{Vol}_B\{|F| \geq M_B(F)\} = 1/e.$$

Since $|F|$ is a real-analytic function, the quantile $M_B(F)$ is uniquely defined if $|F|$ is a non-constant function in $B(0, 1)$.

Our main result is

Theorem: Let F be a non-constant analytic function in the unit ball $B_c(0, 1)$, and let B be any real ball contained in $B(0, 1 - \varepsilon)$, $\varepsilon \leq \frac{1}{4}$. Then, for every $\lambda > 1$,

$$\text{Vol}_B\{|F| \leq (C\lambda)^{-\sigma}M_B(F)\} \leq 1/\lambda,$$

(1.1)