Generalization of Levinson’s Theorem for All Composite Particles in a Multichannel Scattering Problem (*).

R. C. HWA

Lawrence Radiation Laboratory, University of California - Berkeley, Calif.

(riccavuto il 12 Ottobre 1964)

Summary. — On the basis of analyticity and unitarity, Levinson's theorem is generalized for a multichannel scattering problem so that bound-state poles and resonance poles are put on the same footing. The sheet structure of the Riemann surface is analysed, and the condition for poles in the unphysical sheets is derived. The generalized formula relates the total number of composite-particle poles to the behavior of the S-matrix elements along their left-hand cuts.

Introduction.

In a single-channel two-body scattering problem, Levinson’s theorem has been generalized (1) to include the resonance poles in the unphysical sheet. It was found that a relationship exists between the total number of composite-particle poles and the phase change of the S-matrix along the left-hand cut. In this note we consider further the generalization to the case of many channels each having only two particles.

1. — One-channel case.

For the sake of completeness we summarize here the derivation for the one-channel case. The hypotheses are that the partial-wave S-matrix, $S_{\lambda}(s)$, is a real analytic function in the s (energy squared) plane, cut on the real axis

(*) This work was performed under the auspices of the U. S. Atomic Energy Commission.

from the threshold s_i to $+\infty$ and from $-\infty$ to s_L, $s_L < s_i$; in the physical region $S_i(s)$ satisfies the unitarity condition, and in the asymptotic region as $|s| \to \infty$, $S_i(s)$ tends to a constant. The continuation of $S_i(s)$ to the unphysical sheet through the unitarity cut leads to the function $S_i'(s)$, which can be established to be $S_i^{-1}(s)$. Thus if n_o and n_p designate respectively the number of zeros and of poles of $S_i(s)$ on the physical sheet, then $n_o + n_p$ is the total number of poles (elementary and composite particles) in the two-sheeted Riemann surface bounded by the left-hand cut from $-\infty$ to s_L on both sheets.

Consider the integral $I = \oint_C S'(s)/S(s)$, where $S'(s)$ is the first derivative of $S(s)$ (the subscript l having been suppressed) and C is the largest possible closed counterclockwise contour in the cut s-plane. Thus C consists of four parts: C_L, a contour tightly around the left-hand cut in a clockwise direction; C_R, tightly around the right-hand cut; and two large semicircles in the upper and lower half-planes. By Cauchy's theorem, I is identically $(n_o - n_p)2\pi i$. Since $S(s)$ tends to a constant asymptotically, the integrations along the semicircles contribute nothing. The contribution from C_R is $2i \text{Im} \ln S(s)tex \mid_{s_L} = -4i[\delta(\infty) - \delta(s_i)]$, where δ is the (real) phase shift. On the basis of analyticity and unitarity, the usual Levinson theorem can be derived: $\delta(s_i) - \delta(\infty) = (n_o - n_p)\pi$, where n_e is the number of elementary particles or CDD poles. Hence, we obtain $\ln S(s) \mid_{s_L} = (n_o + n_p - 2n_e)2\pi i$, where the left-hand side implies the change $\ln S(s)$ undergoes as s is taken along C_L. Since there is a zero of $S(s)$ associated with each elementary-particle pole—a property that can be made evident by reducing the strength of interaction between the elementary particle and the scattering system, whereupon the zero approaches the pole position—we have the formula $n_o + n_p = 2n_e + n_c$; here n_c is the total number of composite-particle poles that are on both sheets. We thus obtain

\[\ln S(s) \mid_{c_L} = 2\pi i n_c. \]

The meaning of this equation and its application to specific problems in giving an upper bound of n_c are discussed in reference (1).

2. – Sheet structure in the multichannel problem.

When there are n coupled two-particle channels, we consider the Riemann surface consisting of all the sheets connected by the unitarity cut with n normal thresholds. We derive here the structure of this surface and the total number of sheets. Let $A_{\omega\phi}(s)$ be the partial-wave scattering amplitude from...