FORMS AND BAER ORDERED *-FIELDS

BY

KA HIN LEUNG

Department of Mathematics, National University of Singapore, Singapore, 119260
e-mail: matlhk@nus.edu.sg

ABSTRACT

It is well known that for a quaternion algebra, the anisotropy of its norm form determines if the quaternion algebra is a division algebra. In case of biquaternion algebra, the anisotropy of the associated Albert form (as defined in [LLT]) determines if the biquaternion algebra is a division ring. In these situations, the norm forms and the Albert forms are quadratic forms over the center of the quaternion algebras; and they are strongly related to the algebraic structure of the algebras. As it turns out, there is a natural way to associate a tensor product of quaternion algebras with a form such that when the involution is orthogonal, the algebra is a Baer ordered *-field iff the associated form is anisotropic.

1. Introduction

Let D be a *-field, i.e. a division ring with an involution *. In D, we denote the set of nonzero symmetric elements by $S(D, *)$. A subset P in $S(D, *)$ is called a Baer ordering if (i) $P + P \subseteq P$, (ii) $1 \in P$ and for any nonzero $x \in D$, $xPx^* \subseteq P$, (iii) $P \cup (-P) = S(D, *)$. In the literature, there are other types of orderings defined over *-fields; for a reference, see [C2].

Let F be the center of D and F' be the fixed field of * in F. $(D, *)$ is called trivial if $D = F$ or $(D, *)$ is a standard quaternion algebra. Suppose $(D, *)$ is trivial. If $(D, *)$ admits a Baer ordering P, then $T' = \{ x_t x_t^*: x_t \in D \}$ is a preordering on F'. Conversely, if T' is a preordering on F', then as pointed out in [L2, Chapter 14], a T'-normed semiordering (as defined in [L2, Definition 14.4]) exists. It is clear from the definition of Baer ordering that any normed T'-semiordering on F' is a Baer ordering on $(D, *)$. Let $T = \{ x_t x_t^*: x_t \in F \}$. When $D = F$, $T' = T$. Hence $(F, *)$ admits a Baer ordering iff T is a preordering on F'. When $D = \left(\frac{a, b}{F} \right)$ and * is the standard involution, $T' = T + T(-a) +$
$T(-b) + T(ab)$. Hence, T' is a preordering iff T is a preordering and the form $(1, -a, -b, ab)$ is T-anisotropic. Thus, when T is a preordering, the anisotropy of the T-form $(1, -a, -b, ab)$ implies the orderability of (D, \ast). What about the case when $D = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$ but \ast is not standard? For (D, \ast) to admit a Baer ordering, it is still necessary that T is a preordering. In view of the earlier observation, we may ask the following question.

Does there exist a T-form $\phi(D, \ast)$ over F' such that (D, \ast) is Baer ordered iff $\phi(D, \ast)$ is anisotropic over T?

As we will see, the answer is affirmative when D is a quaternion algebra. Moreover, such a result can be extended to the case when D is a tensor product of quaternion algebras with \ast satisfying certain conditions. Note that up until now, there is no easy way to determine if (D, \ast) admits a Baer ordering even when (D, \ast) is a quaternion algebra with an orthogonal involution. In [Le2], it is shown that a \ast-field (D, \ast) admits a Baer ordering iff (D, \ast) is Baer formally real. However, it is not easy to determine if (D, \ast) is Baer formally real in general.

Our investigation on the orderability of quaternion algebras is also motivated by the following longstanding problem raised by Holland [H1]. Does every formally real \ast-field admit a Baer ordering? A \ast-field (D, \ast) is said to be formally real if $\sum \alpha_i x \alpha_i^\ast \neq 0$ for any nonzero elements α_i's in D and $x \in S(D, \ast)$. By using the results mentioned earlier, we see that the answer is affirmative when (D, \ast) is trivial. Therefore, the next case to be considered is a quaternion algebra with a nonstandard involution. Thus, it is important to find a necessary and sufficient condition for a quaternion algebra to admit a Baer ordering.

2. Notation and preliminary results

From now on, we fix the following notation. (D, \ast) is a \ast-field with center F and $[D : F]$ is finite. For any subset E in D, we denote $E \setminus \{0\}$ by \hat{E}.

To deal with noncommutative \ast-fields, we often make use of \ast-valuations. The notion was first introduced by Holland [H2]. The main purpose then was to lift Baer \ast-orderings from the residue \ast-fields, see [H2, C1]. In the papers [Le1, Le2], \ast-valuations are used to study \ast-fields finite dimensional over their centers as the dimension of the residue \ast-fields over their centers are usually smaller, and that allows us to apply an induction argument.

A valuation v is said to be a \ast-valuation if $v(a) = v(a^\ast)$ for all $a \in \hat{D}$. As usual, we denote the valuation ring, residue class division ring and value group by R_v, D_v and Γ_D respectively. For any element a in R_v, we denote its image in D_v by \hat{a}. If E is any subset of D, we denote $\{\hat{a} : a \in E \cap R_v\}$ by \hat{E} and $v(\hat{E})$