BANACH SPACES EMBEDDING INTO L_0

BY

N. J. KALTON

Department of Mathematics, University of Missouri — Columbia, Columbia, MO 65211, USA

ABSTRACT

Our main result in this paper is that a Banach space X embeds into L_1 if and only if $l_1(X)$ embeds into L_0; more generally if $1 \leq p < 2$, X embeds into L_p if and only if $l_p(X)$ embeds into L_0.

1. Introduction

It is still unknown whether every Banach space which embeds into $L_0 = L_0(0, 1)$ is isomorphic to a subspace of L_1. This problem was suggested by Kwapien [9]. Our main result in this paper is that a Banach space X embeds into L_1 if and only if $l_1(X)$ embeds into L_0; more generally if $1 \leq p < 2$, X embeds into L_p if and only if $l_p(X)$ embeds into L_0.

Before discussing the problem and the contents of the paper, we introduce some notation. Throughout the paper Ω will denote a compact metric space, Σ the σ-algebra of Borel subsets of Ω and P a nonatomic probability measure on Σ. Of course there is no loss of generality in taking $\Omega = [0, 1]$ and P Lebesgue measure on $[0, 1]$. For $0 \leq p < \infty$, $L_p(\Omega, \Sigma, P)$ will be abbreviated to L_p. We also denote by $L(p, \infty)$ the Lorentz space, weak L_p, of all $f \in L_0(\Omega, \Sigma, P)$ so that

$$\|f\|_{L_p} = \sup_{0 < x < \infty} x(P(|f| > x))^{1/p} < \infty.$$

Let us say that a linear operator $V : X \to L_p$ (or $V : X \to L(p, \infty)$) is a strong embedding if V is an isomorphism onto its range, and the topology of L_p (or $L(p, \infty)$) on its range coincides with the L_0-topology (convergence in measure).

For $1 \leq p \leq 2$, a Banach space X is said to be of type p (Rademacher) if there

1 Research supported by NSF grant MCS-8301099.

Received November 1, 1984 and in revised form March 31, 1985

305
is a constant C so that

$$\text{Avg} \left\| \sum_{i=1}^{n} e_i x_i \right\|^p \leq C \sum_{i=1}^{n} \| x_i \|^p$$

where the average is taken over all choices of sign $e_i = \pm 1$. Every Banach space is of type one.

The first progress on Kwapien's problem was made by Nikishin [14] who showed that a Banach subspace of L_0 is in fact isomorphic and is a subspace of L_p for every $p < 1$. Later [15] (cf. expositions in [13] and [5]) he refined this result to establish the following factorization theorem:

Theorem 1.1. (Nikishin). Let X be a Banach space of type p ($1 \leq p < 2$) and let $V : X \to L_0$ be any continuous linear operator. Then given $\varepsilon > 0$, there exists a set E with $P(E) \geq 1 - \varepsilon$ so that if

$$Wx = 1_{E}Vx$$

then W is a bounded linear operator from X into $L(p, \infty)$.

Corollary 1.2. Every Banach subspace of L_0 can be strongly embedded in $L(1, \infty)$.

Corollary 1.3. Every Banach subspace of L_0 of type p can be strongly embedded in $L(p, \infty)$.

We obtain the results announced in the introduction by a close analysis of the spaces $L(p, \infty)$. Our methods hinge on the existence of non-trivial continuous linear functionals on the non-locally convex quasi-Banach space $L(1, \infty)$. This fact was first observed by Cwikel and Sagher [2] and recently the dual of $L(1, \infty)$ has been studied by Cwikel and Fefferman [1] and by Kupka and Peck [8]. Our methods are quite similar to techniques in [8] but were obtained independently.

In fact for convenience, in Section 2, we study not $L(p, \infty)$ but instead the l_∞-product $l_\infty(L(p, \infty))$ which we abbreviate to \mathcal{Y}_p. Thus \mathcal{Y}_p consists of all sequences $F = (f_n)$ where $f_n \in L(p, \infty)$ and

$$\| F \| = \sup_n \| f_n \|_{p, \infty} < \infty.$$

We do, however, give an application of these ideas to $L(p, \infty)$ showing the standard embedding of L_p into $L(p, \infty)$ using p-stable processes yields a complemented subspace.