QUADRATIC BASE CHANGE OF θ_{10}

BY

JU-LEE KIM

Department of Mathematics, University of Michigan
Ann Arbor, MI 48109, USA
e-mail: julee@math.lsa.umich.edu

AND

ILYA I. PIATETSKI-SHAPIRO*

Department of Mathematics, P.O. Box 208283, Yale University
New Haven, CT 06520, USA
e-mail: ilya@pascal.math.yale.edu

ABSTRACT

In case of GL_n over p-adic fields, it is known that Shintani base change is well behaved. However, things are not so simple for general reductive groups. In the first part of this paper, we present a counterexample to the existence of quadratic base change descent for some Galois invariant representations. These are representations of type θ_{10}. In the second part, we compute the local L-factor of θ_{10}. Unlike many other supercuspidal representations, we find that the L-factor of θ_{10} has two poles. Finally, we discuss these two results in relation to the local Langlands correspondence.

Introduction

Let k_0 be a p-adic field with odd residue characteristic and let k be a cyclic Galois extension of k_0. Let $Gal(k/k_0)$ be its Galois group generated by σ. Let G be a connected reductive algebraic group defined over k_0 and G_{k_0} (resp. G_k) be its k_0-rational (resp. k-rational) points. Let \hat{G}_{k_0} be the set of irreducible

* The authors are supported in part by NSF grants.

Received May 28, 1998 and in revised form March 20, 2000
admissible representations π of G_{k_0} and let \hat{G}_k^σ be the set of irreducible admissible representations Π of G_k which are σ-invariant, that is, $\Pi \simeq \Pi \circ \sigma$.

In general, the conjectural Shintani lifting describes a (surjective) map from \hat{G}_{k_0} / \sim to \hat{G}_k^σ defined via a twisted character formula where for $\pi, \pi' \in \hat{G}_{k_0}$, $\pi \sim \pi'$ if and only if $\pi \simeq \pi' \otimes \chi$ for a character χ of k_0^\times which is trivial on the image of the norm map N_{k/k_0}. More precisely, this map can be defined as follows:

Definition [AC, La]: Let π and Π be irreducible, admissible representations of G_{k_0} and G_k respectively. Suppose that Π is Galois invariant. Then we can extend Π to a representation of the semi-direct product $G_k \rtimes \langle \sigma \rangle$. We say that Π is a (base change) lift or Shintani ascent of π if for any $g \in G_k$ such that $N_{k/k_0}(g)$ is regular and for some extended representation $\tilde{\Pi}$, we have

\begin{equation}
\chi_\pi(N_{k/k_0} g) = \chi_{\Pi}(\sigma \cdot g).
\end{equation}

Here χ_π and χ_{Π} are the characters of π and $\tilde{\Pi}$. We will also call π a (base change) descent or Shintani descent of Π in this case.

Here characters are represented by functions which are locally integrable and locally constant on the set of regular semisimple elements [HC, Cl] and $N_{k/k_0} : G_k \rightarrow G_{k_0}$ is a norm map. If $G = GL$, N_{k/k_0} is well defined up to conjugacy [AC]. However, for general G, since conjugacy classes are not stable with respect to field extensions [Ko], a norm map is not always well defined. Hence for the left hand side of (*) to be well defined, χ_π should be constant on stable conjugacy classes.

For the case $G = GL$, it is known that the Shintani lifting is surjective [AC, La] and it also coincides with Langlands functorial lift. However, as the examples of this paper show, in general, σ-invariant representations do not necessarily have Shintani descents to G_{k_0}. More precisely, we consider some representations of $GSp_4(k)$ of type θ_{10} (defined in §0.2) associated to a two dimensional algebra K over k. These are analogous to θ_{10} of $Sp_4(k)$ [As, Sr]. Assuming that K/k_0 is a cyclic extension of fields (then K/k_0 is unramified or totally ramified), we prove that these representations of type θ_{10} are σ-invariant; however, they cannot be lifted from any admissible irreducible representation of $GSp_4(k_0)$ in the sense of Shintani base change. In the first part (I), we prove this by showing that $\chi_{\tilde{\theta}_{10}}$, the right hand side of (*), vanishes in a small neighborhood of σ while the left hand side of (*) never vanishes in any small neighborhood of the identity.

In the second part (II), we compute the L-factor [PS] of θ_{10} associated to a quadratic unramified extension K of k. In general, L-functions of supercuspidal