CHARACTERIZING ω_1 AND THE LONG LINE
BY THEIR TOPOLOGICAL ELEMENTARY REFLECTIONS

BY

RENATA GRUNBERG A. PRADO* AND FRANKLIN D. TALL**
Department of Mathematics, University of Toronto
100 St George Street, Toronto, Ontario, Canada M5S 3G3
e-mail: Rprado@exchange.ml.com, tall@math.toronto.edu

ABSTRACT

Given a topological space $(X, T) \in M$, an elementary submodel of set theory, we define X_M to be $X \cap M$ with the topology generated by $\{U \cap M : U \in T \cap M\}$. We prove that it is undecidable whether X_M homeomorphic to ω_1 implies $X = X_M$, yet it is true in ZFC that if X_M is homeomorphic to the long line, then $X \setminus X_M$. The former result generalizes to other cardinals of uncountable cofinality while the latter generalizes to connected, locally compact, locally hereditarily Lindelöf T_2 spaces.

0. Introduction

We take M to be an elementary submodel of H_θ for θ a sufficiently large regular cardinal, but act as if $H_\theta = V$. For an extended discussion of this standard circumlocution see [3] or [5] or [8].

Let (X, T) be a topological space which is a member of M. Let X_M be $X \cap M$ with topology T_M generated by $\{U \cap M : U \in T \cap M\}$. In [8] the second author proved that if X_M is homeomorphic to \mathbb{R}, then $X = X_M$. K. Kunen asked if analogous results hold for ordinals. The first section of this paper, which forms part of the University of Toronto Ph.D thesis of the first author [6], written under

* Work supported by CNPq-Brasil/Brasilia grant 200.209/91-4 and NSERC grant A-7354.
** Work supported by NSERC grant A-7354.
Received February 18, 1999
the supervision of the second author, shows that this is true for cardinals under an additional hypothesis, but is undecidable in general, even for ω_1. This renders the second section result — due to the second author — quite surprising, namely that if X_M is homeomorphic to the long line, i.e., $\omega_1 \times \mathbb{R}$ ordered lexicographically and given the order topology, then $X = X_M$.

ACKNOWLEDGEMENT: We thank the referee for a number of useful comments.

We need the following result:

Theorem 0.1: [2] Let $\langle X, \mathcal{T} \rangle$ be a locally compact T_2 space and let M be a elementary submodel such that $\langle X, \mathcal{T} \rangle \in M$. Then there is a $Y \subseteq X$ and $\pi: \langle Y, \mathcal{T} \rangle \to X_M$ such that π is perfect and onto.

The mapping is defined as follows: Let

$$V_x = \{ V \in \mathcal{T} \cap M : x \in V \}, \text{ for } x \in X_M.$$

$$K_x = \bigcap V_x, \text{ for } x \in X_M.$$

Note that, since X is Hausdorff, a simple elementary submodel argument shows that if $x, y \in M$ and $x \neq y$, then $K_x \cap K_y = \emptyset$.

Define

$$Y = \bigcup \{ K_x : x \in X_M \},$$

and

$$\pi: \langle Y, \mathcal{T} \rangle \to \langle X_M, \mathcal{T}_M \rangle,$$

by

$$\pi(y) = x \text{ if and only if } y \in K_x.$$

1. Upwards reflection of cardinal spaces

We first solve the easier question of what happens when X_M is actually equal to an ordinal.

Theorem 1.1: Let κ be an ordinal, $\langle X, \mathcal{T} \rangle$ a topological space and let M be an elementary submodel such that $X, \mathcal{T}, \kappa \in M$. If $X_M = \kappa$ then $X = \kappa$.

Proof: Notice that as $X_M = \kappa$:

1. $M \models (\forall x, y \in X) (x \in y \text{ or } y \in x)$.
2. $M \models (\forall x \in X) (x \text{ is an ordinal})$.
3. $M \models (\forall x \in X) (\forall y \in x) (y \in X)$.
