ON THE EXTENSION OF HÖLDER MAPS WITH VALUES IN SPACES OF CONTINUOUS FUNCTIONS

BY

GILLES LANCIEN

Département de Mathématiques, Université de Franche-Comté
16 Route de Gray, 25030 Besançon, France
e-mail: glancien@math.univ-fcomte.fr

AND

BEATA RANDRIANANTOANINA*

Department of Mathematics and Statistics, Miami University
Oxford, OH 45056, USA
e-mail: randrib@muohio.edu

ABSTRACT

We study the isometric extension problem for Hölder maps from subsets of any Banach space into c_0 or into a space of continuous functions. For a Banach space X, we prove that any α-Hölder map, with $0 < \alpha \leq 1$, from a subset of X into c_0 can be isometrically extended to X if and only if X is finite dimensional. For a finite dimensional normed space X and for a compact metric space K, we prove that the set of α's for which all α-Hölder maps from a subset of X into $C(K)$ can be extended isometrically is either $(0, 1]$ or $(0, 1)$ and we give examples of both occurrences. We also prove that for any metric space X, the above described set of α's does not depend on K, but only on finiteness of K.

1. Introduction–Notation

If (X, d) and (Y, ρ) are metric spaces, $\alpha \in (0, 1]$ and $K > 0$, we will say that a map $f: X \to Y$ is α-Hölder with constant K (or in short (K, α)-Hölder) if

$$\forall x, y \in X, \quad \rho(f(x), f(y)) \leq K d(x, y)^\alpha.$$
Let us now recall and extend the notation introduced by Naor in [13]. For $C \geq 1$, $B_C(X, Y)$ will denote the set of all $\alpha \in (0, 1]$ such that any (K, α)-Hölder function f from a subset of X into Y can be extended to a (CK, α)-Hölder function from X into Y. If $C = 1$, such an extension is called an isometric extension. When $C > 1$, it is called an isomorphic extension. If a (CK, α)-Hölder extension exists for all $C > 1$, we will say that f can be almost isometrically extended. So, let us define:

$$A(X, Y) = B_1(X, Y), \quad B(X, Y) = \bigcup_{C \geq 1} B_C(X, Y) \quad \text{and} \quad \bar{A}(X, Y) = \bigcap_{C > 1} B_C(X, Y).$$

The study of these sets goes back to a classical result of Kirszbraun [10] asserting that if H is a Hilbert space, then $1 \in A(H, H)$. This was extended by Grünbaum and Zarantonello [5] who showed that $A(H, H) = (0, 1]$. Then the complete description of $A(L^p, L^q)$ for $1 < p, q < \infty$ relies on works by Minty [12] and Hayden, Wells and Williams [6] (see also the book of Wells and Williams [14] for a very nice exposition of the subject). More recently, K. Ball [1] introduced a very important notion of non-linear type or cotype and used it to prove a general extension theorem for Lipschitz maps. Building on this work, Naor [13] improved the description of the sets $B(L^p, L^q)$ for $1 < p, q < \infty$.

In this paper, we concentrate on the study of $A(X, Y)$ and $\bar{A}(X, Y)$, when X is a Banach space and Y is a space of converging sequences or, more generally, a space of continuous functions on a compact metric space. This can be viewed as an attempt to obtain a non-linear version of the results of Lindenstrauss and Pelczyński [11] and later of Johnson and Zippin ([8] and [9]) on the extension of linear operators with values in $C(K)$ spaces.

So let us denote by c the space of all real converging sequences equipped with the supremum norm and by c_0 the subspace of c consisting of all sequences converging to 0. If K is a compact space, $C(K)$ denotes the space of all real valued continuous functions on K, equipped again with the supremum norm.

In section 2, we show that if X is infinite dimensional and Y is any separable Banach space containing an isomorphic copy of c_0, then $\bar{A}(X, Y)$ is empty. On the other hand, we prove that $A(X, c_0) = (0, 1]$, whenever X is finite dimensional.

In section 3, we show that for any finite dimensional space X, $\bar{A}(X, c) = (0, 1]$ and $A(X, c)$ contains $(0, 1)$. Then the study of the isometric extension for Lipschitz maps turns out to be a bit more surprising. Indeed, we give an example of a 4-dimensional space X such that $A(X, c) = (0, 1)$. To our knowledge, this provides the first example of Banach spaces X and Y such that $A(X, Y)$ is not