Summary. — Cross-sections of the inclusive reactions $K^-p \rightarrow \Lambda X$ and $K^-p \rightarrow \Sigma^+ X$ in the region of target fragmentation are analysed. A model is adopted which is based on exchange of K and K^* Regge trajectories and on a dual description of the reggeon-particle scattering involved in both reactions. It is shown that the model provides a detailed description of the data of a high-statistics experiment at 4.2 GeV/c incident momentum. Missing-mass distributions with a pronounced resonance structure, for various ranges of $x = p_L/p_{\text{max}}$ or t_{PY}, as well as distributions in x and p_T, are reproduced by the model. The relative amounts of the K and K^* exchange contributions to the integrated inclusive cross-sections are evaluated. Implications for coupling strengths and reggeon-particle cross-sections are discussed. The value of the SU_3 parameter $F/(D+F)$ for pseudoscalar coupling is found to be 0.25 ± 0.03. The model is also capable of predicting the missing-mass spectrum $K^-p \rightarrow \Lambda X$ at 8.25 GeV/c.
1. Introduction.

In a previous paper, target and beam fragmentation in the inclusive reaction \(K^- p \rightarrow \Lambda X \) at 4.2 GeV/c incident momentum (lab) has been analysed (1) by applying a triple-Regge model (2) and by making use of semi-local duality (3).

In the present paper, the target fragmentations \(p \xrightarrow{K^-} \Lambda \) and \(p \xrightarrow{K^-} \Sigma^+ \), which are closely related processes, are studied in greater detail. The purpose is to test a dual description against the data from the same experiment. These data consist of 47 000 \(\Lambda \)'s and 11 000 \(\Sigma^+ \)'s in the fragmentation region. The lambda reaction will be considered first.

The Mueller diagram for \(p \xrightarrow{K^-} \Lambda \) in the proton fragmentation region (4) is indicated in fig. 1. In the fragmentation region \(t \) is restricted to values \(|t| < 1 \, (\text{GeV/c})^2\). In ref. (1) the same \(t \)-cut was used; in that paper the effective Regge trajectory \(z_R(t) \) coupling to the \(p\bar{\Lambda} \) channel was shown to be intermediate between the presumably straight \(K \) and \(K^* \) trajectories (4). The next problem which arises is how to determine their individual contributions (5).

In this paper, a description of the complete inclusive distribution function \(d^2\sigma/dM^2 dt \) in the fragmentation region is envisaged by means of which these contributions, together with order parameters, can be found.

(4) Target protons being unpolarized, the hyperon polarization does not allow for a separation of natural and unnatural spin-parity exchange.