SUCCESSOR OF SINGULARS:
COMBINATORICS AND NOT COLLAPSING
CARDINALS ≤ κ IN (< κ)-SUPPORT ITERATIONS

BY

SAHARON SHELAH*

Institute of Mathematics, The Hebrew University of Jerusalem
Givat Ram, 91904 Jerusalem, Israel

and

Department of Mathematics, Rutgers University
New Brunswick, NJ 08854, USA

and

Mathematics Department, University of Wisconsin – Madison
Madison, WI 53706, USA

e-mail: shelah@math.huji.ac.il

ABSTRACT
On the one hand, we deal with (< κ)-supported iterated forcing notions which are (E0, C1)-complete, bearing in mind problems on Whitehead groups, uniformizations and the general problem. We deal mainly with the case of a successor of the singular cardinal. This continues [Sh 587].

On the other hand, we deal with complimentary ZFC combinatorial results.

Annotated Contents

§1. GCH implies for successor of singular no stationary S has uniformization 128

[For λ strong limit singular, for stationary S ⊆ S^λ^+_{cf(λ)} we prove strong negation of uniformization for some S-ladder system and even weak versions of diamond. E.g., if λ is singular strong limit and 2^λ = λ^+, then there are γ_i^δ < δ increasing in i < cf(λ) with limit δ for each δ ∈ S such that for every f: λ^+ → α^* < λ for stationarily many δ ∈ S, for every i we have f(κ_2i) = f(κ_2i+1).]

§2. Case C: Forcing for successor of singulars 131

[Let λ be strong limit singular κ = λ^+ = 2^λ, S ⊆ S^κ_{cf(λ)} stationary not reflecting. We present the consistency of a forcing axiom implying, e.g.: if h_δ is a function from A_δ to θ, A_δ ⊆ δ = sup(A_δ),

* I would like to thank Alice Leonhardt for the beautiful typing.

This research was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities. Publication 667.

Received November 16, 1998 and in revised form March 5, 2001
§3. κ^+.c.c. and κ^+.pic ... 141

[In the forcing axioms we would like to allow forcing notions of cardinality $>\kappa$; for this we use a suitable chain condition (allowed here and in [Sh 587]). This sheds more light on the strongly inaccessible case and we comment on this (and forcing against cases of diamonds).]

§4. Existence of non-free Whitehead (and Ext($G, \mathbb{Z}) = 0$) abelian groups in successor of singulars .. 150

[We use the information on the existence of weak version of the diamond for $S \subseteq S^\lambda_\lambda^+$, λ strong limit singular with $2^\lambda = \lambda^+$, to prove that there are some abelian groups with special properties (from reasonable assumptions). We also get more combinatorial principles on $\lambda = \mu^+$, $\mu > \text{cf}(\mu)$ (even if just $\lambda = 2^{2^\sigma}$).]

References .. 155

§1. GCH implies for successor of singular no stationary S has uniformization

We show that a major improvement in [Sh 587] over [Sh 186] for inaccessible (every ladder on S has uniformization rather than some ladder on S) cannot be done for successor of singulars. This is continued in §4.

1.1 FACT: Assume

(a) λ is strong limit singular with $2^\lambda = \lambda^+$, let $\text{cf}(\lambda) = \sigma$

(b) $S \subseteq \{\delta < \lambda^+: \text{cf}(\delta) = \sigma\}$ is stationary.

Then we can find $(< \gamma^\delta_i : i < \sigma : \delta \in S)$ such that

(\alpha) γ^δ_i is increasing (with i) with limit δ

(\beta) if $\mu < \lambda$ and $f : \lambda^+ \to \mu$ then the following set is stationary:

$\{\delta \in S : f(\gamma^\delta_{2i}) = f(\gamma^\delta_{2i+1})$ for every $i < \sigma\}$.

Moreover

(\beta') if $f_i : \lambda^+ \to \mu_i, \mu_i < \lambda$ for $i < \sigma$ then the following set is stationary:

$\{\delta \in S : f_i(\gamma^\delta_{2i}) = f_i(\gamma^\delta_{2i+1})$ for every $i < \sigma\}$.

Proof: This will prove 1.2, too. We first concentrate on (\alpha) + (\beta) only.

Let $\lambda = \sum_{i < \sigma} \lambda_i, \lambda_i$ a cardinal increasing continuous with $i, \lambda_{i+1} > 2^\lambda, \lambda_0 > 2^\sigma$. For $\alpha < \lambda^+$, let $\alpha = \bigcup_{i < \sigma} a_{\alpha,i}$ such that $|a_{\alpha,i}| < \lambda_i$. Without loss of generality $\delta \in S \Rightarrow \delta$ divisible by λ^ω (ordinal exponentiation). For $\delta \in S$ let $< \beta^\delta_i : i < \sigma$ be increasing continuous with limit δ, β^δ_i divisible by λ and > 0.

For $\delta \in S$ let $< \beta^\delta_i : i < \sigma$ be such that: $b^\delta_i < \beta^\delta_i, |b^\delta_i| < \lambda_i, b^\delta_i$ is increasing