NORMAL FAMILIES AND FIXED POINTS

By

JIANNING CHANG AND MINGLIANG FANG *

Abstract. Let \mathcal{F} be a family of meromorphic functions in a domain D and let $k \geq 2$ be a positive integer. If, for every $f \in \mathcal{F}$, its k-th iterate f^k has no fixed point in D, then \mathcal{F} is normal in D.

1 Introduction

Let D be a domain in \mathbb{C} and \mathcal{F} a family of meromorphic functions defined in D. \mathcal{F} is said to be normal in D, in the sense of Montel, if each sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence $\{f_{n_j}\}$ which converges spherically locally uniformly in D, to a meromorphic function or ∞ (see Hayman [6], Schiff [8], Yang [11]).

Let f be a meromorphic function in a domain $D \subset \mathbb{C}$ and k a positive integer. We say that $z_0 \in D$ is a fixed point of f^k (the k-th iterate of f) if $f^j(z_0) \in D$ for $j = 1, 2, \ldots, k - 1$ and $f^k(z_0) = z_0$.

Here and in the sequel, $f^1(z) = f(z)$, $f^2(z) = f(f(z))$, and $f^k(z)$ is defined inductively via $f^k(z) = f(f^{k-1}(z))$ for $k = 2, 3, \ldots$.

If z_0 is a fixed point of f^k satisfying $|(f^k)'(z_0)| > 1$, then z_0 is called a repelling fixed point of f^k.

In 1992, Yang [10, Problem 8] posed the following problem.

Problem 1. Let \mathcal{F} be a family of entire functions, $k \geq 2$ a positive integer and D a domain in \mathbb{C}. If, for every $f \in \mathcal{F}$, both f and its k-th iterate f^k have no fixed point in D, is \mathcal{F} normal in D?

*Supported by the NNSF of China (Grant No. 10471065), the SRF for ROCS, SEM., and the Presidential Foundation of South China Agricultural University.
Theorem A. Let \(\mathcal{F} \) be a family of holomorphic functions in a domain \(D \). If, for every \(f \in \mathcal{F} \), there exists a positive integer \(k = k(f) \geq 2 \) such that \(f^k \) has no repelling fixed point in \(D \), then \(\mathcal{F} \) is normal in \(D \).

It is natural to pose the following problem.

Problem 2. Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(D \) and \(k \geq 2 \) a positive integer. If, for every \(f \in \mathcal{F} \), its \(k \)-th iterate \(f^k \) has no fixed point in \(D \), is \(\mathcal{F} \) normal in \(D \) ?

For Problem 2, Wang and Wu [9] improved a result of Essén and Wu [4] and proved

Theorem B. Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(D \) and \(q \) a non-negative integer. If, for every \(f \in \mathcal{F} \), there is a positive integer \(k \geq 2 \) such that the \(k \)-th iterate of \(f \) has at most \(q \) fixed points in \(D \), then \(\mathcal{F} \) is quasinormal with order not greater than \(\max(4, q + 3) \) in \(D \).

For the notion of quasinormal families, see Schiff [8]. In this paper, we give an affirmative answer to Problem 2.

Theorem 1. Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(D \) and \(k \geq 2 \) a positive integer. If, for every \(f \in \mathcal{F} \), its \(k \)-th iterate \(f^k \) has no fixed point in \(D \), then \(\mathcal{F} \) is normal in \(D \).

Naturally, we ask that whether "its \(k \)-th iterate \(f^k \) has no fixed point in \(D \)" can be replaced by "its \(k \)-th iterate \(f^k \) has no repelling fixed point in \(D \)" in Theorem 1. The following example shows that the answer is negative.

Example 1. Let

\[\mathcal{F} = \{ f_n(z) = 1/(nz) : n = 1, 2, \ldots \}, \quad D = \{ z : |z| < 1 \}. \]

Then \(\mathcal{F} \) is a family of meromorphic functions in \(D \). Obviously, \(f_n^2 = \text{id} \) for each function \(f_n \in \mathcal{F} \), where \(\text{id} \) denotes the identity function. Hence if \(k \) is even, \(f_n^k(z) = z \); while, for \(k \) odd, \(f_n^k(z) = 1/(nz) \). Thus for any positive integer \(k \) and any \(f_n \in \mathcal{F} \), \(f_n^k \) has no repelling fixed point in \(D \). But \(\mathcal{F} \) is not normal at \(z = 0 \).

2 **Some lemmas**

In order to prove Theorem 1, we require the following results.

Lemma 1 ([7, Lemma 2], cf. [12, p. 217]). Let \(\mathcal{F} \) be a family of meromorphic functions in a domain \(D \), all of whose zeros have multiplicity at least \(k \), and suppose