A NOTE ON "UNIVERSAL" PHRAGMÉN-LINDELÖF THEOREMS AND A LEMMA OF BEURLING

By

MATTS ESSEN

Department of Mathematics, University of Uppsala, Thunbergsvägen 3, S-75238 Uppsala, Sweden

In this note, we combine a lemma of Beurling [2] with some ideas from Toppila [8] to discuss the "universal" Phragmén-Lindelöf conjecture of D. Newman (cf. [3, Problem 7.46]).

Beurling's lemma. Let L_m, with $1 \leq m \leq p$, be simple Jordan arcs in the complex plane from 0 to ∞ with no common points except 0. Let D_m, with $1 \leq m \leq p$, be the simply-connected domains bounded by the curves. For every m, u_m is assumed to be subharmonic and unbounded above in D_m but uniformly bounded above on that part of ∂D_m which is in the finite plane. Put

$$M_m(r) = \sup_{z \in D_m} u_m(z), \quad |z| = r, \quad z \in D_m.$$

Then there is a positive constant c such that for all sufficiently large r,

$$\sum_{i=1}^{p} (\log M_m(r))^{-1} \leq 2 (\log r - c)^{-1}. \quad (1)$$

(We note that if u is subharmonic in a domain D and $\zeta \in \partial D$, we define $u(\zeta) = \limsup_{z \to \zeta} u(z)$, $z \in D$.) A convenient reference is Lemma 3 in Domar [4].

We make the following assumptions on the domain D and the analytic function f:

I. D is an unbounded domain in the complex plane with at least one finite boundary point.

II. f is analytic in D and for every point $\zeta \in \partial D$, $\zeta \neq \infty$, we have

$$\limsup_{z \to \zeta} |f(z)| \leq 1, \quad z \in D. \quad (2)$$

Theorem 1. Let D and f be as above. We assume that $f(D) \cap \{ |w| > \sqrt{2} \} \neq \emptyset$. Then there is a constant c such that for all sufficiently large r, we have

$$\log M(r, f) \geq \log r - c, \quad (3)$$

where $M(r, f) = \sup_{z \in D} |f(z)|$, $|z| = r, \ z \in D$.

Corollary 1 (the "universal" Phragmén–Lindelöf theorem). Let \(f \) be analytic in \(D \) and assume that (2) holds at every finite boundary point \(\zeta \). If
\[
\lim \inf \frac{M(r, f)}{r} = 0, \quad r \to \infty,
\]
then \(|f(z)| \leq 1 \) throughout \(D \).

Proof of Corollary 1. The conclusion is trivial if \(f \) is bounded. If \(f \) is unbounded, there exists \(w_0 \in f(D) \) with \(|w_0| > \sqrt{2} \). But then inequality (3) and assumption (4) contradict each other. Consequently, \(f \) must be bounded and Corollary 1 is proved.

For other proofs of the Newman conjecture, see Fuchs [5], Gehring, Hayman and Hinkkanen [6] and Toppila [8].

Remark 1. Condition (4) in Corollary 1 is best possible. To see this, it suffices to consider the example \(D = \{ z : |z| > 1 \} \) and \(f(z) = z \).

Remark 2. If there are no finite boundary points in \(D \), \(f \) will be entire and our conclusions are trivial.

Corollary 2. Let \(D \) and \(f \) satisfy (I) and (II). Assume that there exists \(w_0 \in f(D) \) such that \(f^{-1}(w_0) \) contains at least \(p \) points. Then we have either
\[
\log M(r, f) \leq p \log r + O(1), \quad r \to \infty,
\]
or
\[
\log M(r, f) \geq (p + 1) \log r + O(1), \quad r \to \infty.
\]

Proof of Theorem 1. We first find \(z_0 \) such that \(f(z_0) = w_0, \, f'(z_0) \neq 0 \) and \(|w_0| > \sqrt{2} \). If \(h(z) = e^{\beta}(f(z) - w_0) \), we choose \(\beta \in \mathbb{R} \) in such a way that
\[
h'(z) \neq 0 \quad \text{if Re } h(z) = 0 \quad \text{or} \quad \text{Im } h(z) = 0,
\]
\[
\text{if } |f(z)| \leq (|w_0| + \sqrt{2})/(2\sqrt{2}), \quad \text{we have Re } h(z) > 0 \text{ and Im } h(z) > 0.
\]

It is clear that (8) is true for all \(\beta \) in an interval \(J \) and that (7) is true for almost all \(\beta \in J \).

Since \(|w_0| > \sqrt{2} \), \(f \) must be unbounded in \(D \). Continuing \(h^{-1} \) along the positive and negative real axis with \(h^{-1}(0) = z_0 \), we obtain two curves \(L_1 = L_1(\beta) \) and \(L_2 = L_2(\beta) \) in the domain of \(f \) which start at \(z_0 \). We claim that for almost all \(\beta \in J \), we have
\[
L_1 \cap L_2 = \{ z_0 \},
\]
\[
h^{-1}(w) \to \infty \quad \text{as } w \to \infty \text{ along the real axis}.
\]