AN APPLICATION OF THE AHLFORS DISTORTION THEOREM*

By

W. H. J. FUCHS

in Ithaca, N.Y., U.S.A.

1. The following uniqueness theorem is due to P. Malliavin (2, 5.5.1, p. 203).

Theorem A. Hypothesis. The function \(g(z) \) is holomorphic in the half-plane \(x \geq 0 \) and

\[
|g(z)| \leq (v(x)e^{-k(r)})^{x} \quad (z = x + iy = re^{i\theta}; \ x \geq 0)
\]

where

\(v(x) \) is continuous and \(v(x) \geq 1 \) in \(x \geq 0 \);

\[
k(r) > 0, \ 0 < k(R) - k(r) < A\{\log(R/r) + 1\} \quad (0 < r < R);
\]

and if

\[
S(t) = \sup_{x \geq 0} \{t - \log v(x)\}x
\]

then, for every \(a \geq 0 \)

\[
\int_{0}^{\infty} r^{-2}S[k(r) - a]dr = \infty.
\]

Conclusion.

\(g(z) \equiv 0. \)

Malliavin's statement of the Theorem is slightly different. The function

* Research partially supported by the National Science Foundation.

61
$v(x)^*\text{ is replaced by a step-function and our } k(r) \text{ would be } k'(r) \text{ in his notation. Malliavin's form is easily derived from Theorem A.}$

Malliavin's proof is fairly intricate and uses ideas from functional analysis. In view of the many applications of Theorem A to problems of closure and of quasi-analyticity it may be worth while to give another proof of Theorem A.

The proof given in this paper is based on the following special case of the

Ahlfors Distortion Theorem (1, a proof can also be found in 3, p. 93–98). Let D be the domain

$$|t| < \Delta(\sigma), \quad -\infty < \sigma < \infty$$

in the $s = \sigma + it$ plane. Let

$$w = u + iv = w(s)$$

map D conformally on

$$|v| < \frac{1}{2}\pi, \quad -\infty < u < \infty$$

in such a way that $u \to +\infty$ as $s \to +\infty$ in D and $u \to -\infty$ as $s \to -\infty$ in D.

If

$$s = \sigma + it \in D, \quad s_1 = \sigma_1 + it_1 \in D$$

and

$$\int_\sigma^{\sigma_1} \frac{d\lambda}{\Delta(\lambda)} > 4,$$

then

$$u(s_1) - u(s) > \frac{1}{2\pi} \int_\sigma^{\sigma_1} \frac{d\lambda}{\Delta(\lambda)} - 4\pi.$$

By means of the substitutions