A Classical Solution.

SHU-LIN LO (*)

Department of Theoretical Physics - 12 Parks Rd, Oxford, England
Department of Physics, Nanyang University
Jurong Rd, Singapore, 22, Republic of Singapore

(ricevuto il 28 Aprile 1977)

Summary. — A linear potential is found to be a static «electric» solution to the classical Yang-Mills gauge theory.

Classical solutions to the equation of motion of the Yang-Mills gauge theory

\[f_{\mu \nu \rho} + gb_{\rho} \times f_{\mu \nu} = - j_{\nu} \]

have been studied extensively in recent years (1,2). Most of them deal with the sourceless \(j_{\nu} = 0 \) case (1), and some of them deal with the case in which the vector field \(b_{\nu} \) couples with some scalar meson field (2).

We wish to use eq. (1) to study the nonrelativistic quark model in which the meson is considered as a qq bound state, and the colour gluons provide the binding of the quarks. The gluon field is then generated by a static quark source

\[\sigma_{\alpha} = - i j_{\alpha} = 4\pi g g^{\alpha}(x - x_{0})\eta_{\alpha}, \quad j_{l} = 0, \quad l = 1, 2, 3, \]

(*) On leave from School of Physics, University of Melbourne, Parkville, Vic., Australia.

where $\alpha = 1, \ldots, 8$ is the SU_3 index, and η_{α}^a is the colour charge of the quark q_a. The Latin letters at the beginning of the alphabet (a, b, c, \ldots) are used for flavour, and letters in the middle (i, j, k, l, \ldots) are for colour matrix elements and space indices. It is found that a static «electric» solution to the time component of eq. (1) is simply

$$\begin{cases} b_{\alpha} = g r \eta_{\alpha}^a + c_1 T_{\alpha} \cdot e_2 , \\ b_i^\alpha = 0 , \end{cases}$$

where $T^{\alpha} = \varepsilon_{ijk} \lambda_{ij}^\alpha \sigma_z$. Explicitly the T-matrix has the following form:

$$T_1 = \begin{pmatrix} 0 & x_2 & 0 \\ -x_2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$T_2 = \begin{pmatrix} 0 & -ix_3 & 0 \\ -ix_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$T_3 = T_8 = 0 ,$$

$$T_4 = \begin{pmatrix} 0 & 0 & -x_2 \\ 0 & 0 & 0 \\ x_2 & 0 & 0 \end{pmatrix},$$

$$T_5 = \begin{pmatrix} 0 & 0 & ix_2 \\ 0 & 0 & 0 \\ ix_2 & 0 & 0 \end{pmatrix},$$

$$T_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x_1 \\ 0 & -x_1 & 0 \end{pmatrix},$$

$$T_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -ix_1 \\ 0 & -ix_1 & 0 \end{pmatrix}.$$