A Rigorous Bound for the $e^+e^- \rightarrow \pi^0\gamma$ Cross-Section (*)

D. R. PALMER

Department of Physics and Astronomy, University of Rochester - Rochester, N. Y.

(ricrevuto il 3 Giugno 1971)

Summary. — Using only the analyticity of the $\gamma\gamma\pi^0$ form factor and the experimental lifetime of the π^0, we determine the bound

$$\int_{4m^2}^{\infty} ds \sigma_{tot}(s) > 35.3 \mu b (\text{MeV})^4 (4m^2) k^2 (5.91 + k^2 + 4.44k + 256a^2 - 32ak - 70.9a)$$

where $\sigma_{tot}(s)$ is the total cross-section for $e^+e^- \rightarrow \pi^0\gamma$, k is an arbitrary real number, and a is the slope of the form factor at $s = 0$. Bounds are also obtained for the isoscalar and isovector cross-sections separately.

By means of only analyticity of various form factors and positivity, many bounds on physically interesting quantities have recently been derived. A bound involving derivatives of k_{13} form factors has been obtained by Li and Pagels (1). They (2) subsequently derived a bound on an undifferentiated k_{13} form factor using a technique originally due to Meiman (3). Okubo (4,5) has presented an elegant generalization of their method which leads to improved bounds on the k_{13} parameters. In addition, bounds have been obtained on the electromagnetic radius of the pion (6,7), the hadronic contributions to the anomalous magnetic

(*) Work supported in part by the U.S. Atomic Energy Commission.

(5) S. Okubo: to be published in Phys. Rev. D.

(6) D. N. Levin and V S. Mathur: private communication.
A RIGOROUS BOUND FOR THE $e^+e^-\rightarrow \pi^0\gamma$ CROSS-SECTION

moment of the muon (7) and the dimensions of scale breaking interactions (8). In this note we consider the $\gamma\gamma\pi^0$ form factor in order to derive bounds on an integral over the cross-section for $e^+e^-\rightarrow \pi^0\gamma$. We assume that this process proceeds via the exchange of a single, virtual photon. With regard to this assumption we note that the two-photon mechanism discussed by Brodsky, Kinoshita and Terazawa (9), in which the incident leptons emit two virtual photons which in turn annihilate to produce the nonleptonic final state, should not be significant for this process because the $\gamma\gamma\rightarrow \pi^0\gamma$ amplitude is zero by charge-conjugation invariance.

If the $\gamma\gamma\pi^0$ form factor $f(s)$ is defined by the relation

\begin{equation}
(4p_\gamma p'_\gamma V V') \langle \gamma | f(0) | \pi^0(p), \gamma(p') \rangle = \frac{f(p + p')}{m_{\pi}} e_{\mu\nu} p^\mu p'^\nu e^\gamma,
\end{equation}

where e^γ is the photon polarization vector and $e_{\mu\nu}$ is the completely antisymmetric Ricci tensor, and the one-photon exchange approximation is valid for the reaction $e^+e^-\rightarrow \pi^0\gamma$, then one has the expression (10)

\begin{equation}
\sigma_{tot}(s) = \frac{1}{6} \pi \alpha^2 \frac{(s - m_{\pi}^2)^3}{s^2 m_{\pi}^2} |f(s)|^2
\end{equation}

for the total cross-section. Here s is the square of the center-of-mass energy. After multiplying both sides of eq. (2) by s^k and integrating from $s = 4m_{\pi}^2$ to ∞, we obtain

\begin{equation}
\int_{4m_{\pi}^2}^{\infty} ds s^k \sigma_{tot}(s) = \frac{\pi \alpha^4}{6 m_{\pi}^2} \int_{4m_{\pi}^2}^{\infty} ds s^{k-1}(s - m_{\pi}^2)^3 |f(s)|^2.
\end{equation}

The real number k is arbitrary to the extent the integrals involved exist.

The form factor $f(s)$ is an analytic function of s in the complex s-plane with a branch cut from $s = 4m_{\pi}^2$ to ∞. At $s = 0$, in the unphysical region for $e^+e^-\rightarrow \pi^0\gamma$, the form factor describes the two-photon decay of the π^0:

\begin{equation}
\frac{1}{\tau} = \frac{\alpha}{16 m_{\pi}} |f(0)|^2,
\end{equation}

where τ is the mean life.

(7) D. R. Palmer: to be published in Phys. Rev. D.

