Weak Transitions in 160Tb Decay.

R. K. CHATTOPADHYAY, J. M. CHATTERJEE and B. SETHI

Saha Institute of Nuclear Physics - Calcutta, 700064, India

(ricevuto il 23 Marzo 1984)

Summary. — The decay scheme of the 72.3d^{160}Tb and γ-transitions in 160Dy has been studied by γ-ray spectroscopy with high-efficiency Ge(Li) and HPGe detectors. The intensity of the 1004.8 keV γ-ray is measured to be 0.04 ± 0.01 relative to 30 for the 879.353 keV γ-ray. Gamma-rays of energies 707.6 and 239.70 keV with relative intensities 0.010 ± 0.005 and 0.002 ± 0.001 are observed and assigned to 160Dy. The energies and relative intensities of all other γ-rays are remeasured to remove anomalies in the previous reports. A new β-group of intensity $(0.032 \pm 0.012)\%$ and $\log f_t 11.2 \pm 0.2$ is proposed to feed the 1288.6 keV level in 160Dy. The total conversion coefficient of the 197.008 keV transition in 160Dy is measured to be 0.22 ± 0.08. The total and K-shell conversion coefficients of the 86.796 keV transition in 160Dy are remeasured and the results obtained are 4.71 ± 0.20 and 1.54 ± 0.12, respectively. The results of the branching ratios of β and γ transitions are discussed. The band-mixing parameter z_2 for 160Dy is determined and it is observed that the measured γ-ray branching ratios do not lead to a unique value of z_2 for 160Dy.

PACS. 23.20. - Electromagnetic transitions.
PACS. 27.70. - 150 < A < 189.

1. - Introduction.

The level scheme of the doubly even nuclide 160Dy has been investigated by many authors from the decay of 160Tb and 160Ho, and by the (p, t), (d, d') and $(\alpha, x\gamma)$ reactions (1). Although many features of the level scheme, the

(1) Nucl. Data Sheets, 12, No. 4 (1974).
ground-state rotational band and the gamma-vibrational band are well estab-
lished, several discrepancies still exist.

The 5^+ level at 1288.8 keV in the gamma-vibrational band is reported to
be weakly populated in the 160Tb decay by γ-transition from a higher state, and
de-exciting to the 4^+ member of the ground-state band by a 1005 keV transition
for which an intensity limit of $< 0.1\%$ is reported (2). In comparison
with the 160Ho decay (1) one should expect, in addition to this transition, a
few more transitions to other levels in the ground-state band and the gamma-
vibrational band. Owing to the inexact knowledge of the intensities of the
de-exciting γ-rays from the 5^+ level, no information is available regarding
any β-feeding to this level in the 160Tb decay. Besides, there is considerable
discrepancy in the reported intensities of a few other weak γ-rays in the decay
of 160Tb (1).

The total conversion coefficient of the $4^+ \rightarrow 2^+ 197$ keV transition in the
ground-state band in 161Dy is not reported although the nature of this transition
is established to be $E2$ from the measured K conversion coefficient and
the conversion electron intensities.

A few recent investigations (3-7) have been concerned with the determination
of the band-mixing parameter ε_2 which describes the coupling of the gamma-
vibrational and the ground-state band in 161Dy. It is observed from some of
the investigations (4-6) that the values of ε_2 obtained from the various transitions
from the $2^+, 3^+$ and 4^+ levels of the gamma-vibrational band to different
levels of the ground-state rotational band are inconsistent with the predictions
of a constant value of ε_2 for all interband transitions, although one report
gives consistent values (7). The determination of ε_2 requires accurate intensities
of the relevant γ-transitions. Precise knowledge of the decay characteristics
of 160Tb and the properties of transitions in 161Dy is also necessary because
160Tb can serve as a useful calibrating source for Ge(Li) detectors, with 20
prominent γ lines in the $(86-1312)$ keV energy range and a convenient half-
life of 72 days. Recently reported (7) intensities of some of the prominent
γ-rays in the decay of 160Tb disagree significantly with the earlier reported
values (1).

The present work was undertaken to resolve the above-mentioned problems
in the decay of 160Tb by γ-ray spectroscopy with Ge detectors with emphasis
on the measurement of intensities and conversion coefficients.

\begin{thebibliography}{9}
\end{thebibliography}