Schwinger Terms in Perturbation Theory (*)

B. HAMPRECHT (**)

Istituto di Fisica dell'Università - Torino

(ricevuto il 1° Dicembre 1966)

Summary. — Schwinger terms in current commutators are determined in a quark model, using perturbation theory. It is found that the equal-time commutator of two time components of vector currents contains no Schwinger terms, whereas the commutator of a time and a space component of vector currents contains a Schwinger term proportional to the derivative of a δ-function. The commutators of time components of axial and vector currents are also free from Schwinger terms, so that the local $SU_3 \times SU_3$ algebra recently proposed by Gell-Mann is unaffected.

(*) The research reported in this document has been sponsored in part by the Air Force Office of Scientific Research, OAR, under Grant No. AF EOAR 65-56 with the European Office of Aerospace Research, United States Air Force.

(**) Permanent address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

and Gell-Mann (5) (i.e. the algebra generated by the time components of vector and axial vector currents) is free from Schwinger terms.

In order to give a perturbation theoretic treatment of Schwinger terms in current commutators it is necessary to define very carefully what we mean by a current. It is customary to derive commutation relations for expressions like \(\psi^\dagger(x)\gamma_\mu A_\mu\psi(x) \) from a free quark model and postulate these to hold for physical currents of the corresponding quantum numbers. But \(\psi^\dagger(x)\gamma_\mu A_\mu\psi(x) \) is a bad candidate for our purposes since it is ill defined. In quantum electrodynamics the electromagnetic current is in fact defined as a normal product

\[
(1) \quad j_{\alpha}(x) = N(\psi^\dagger(x)\gamma_\mu\gamma_\alpha\psi(x)).
\]

We shall generalize this expression and represent currents in perturbation theory by

\[
(2) \quad j_\alpha(x) = N(\psi^\dagger(x)\gamma_\mu A_\mu\psi(x)),
\]

where \(A_\mu \) is a direct product of \(\gamma \)-matrices and \(SU_3 \)-matrices. This expression has the advantage of being well-defined. There is also hardly any other choice but (2) since (2) contains the electromagnetic current as well, for which, we know, (1) must hold in analogy to quantum electrodynamics.

This precaution was irrelevant in I since the only difference between (2) and the expression \(\psi^\dagger(x)\gamma_\mu A_\mu\psi(x) \) formally reduces to an infinite additive constant, showing up in vacuum expectation values only; and these were not treated in I.

A further advantage of feeding (2) into a perturbation expansion lies in the fact, that diagrams like Fig. 1 are excluded; there are no contractions of two factors which are already in normally ordered form.

\[j_\alpha(x) \]

Fig. 1.

Our aim is to derive the commutation relations of the currents (2) from perturbation theory. Since the only difference between (2) and the currents used in I lies in the vacuum expectation values, we know already that the currents of (2) satisfy the conventional commutation relations up to possible Schwinger terms. These additional terms contributing to the vacuum expectation values
