Remarks on the Local Regularity of the $\bar{\partial}$-Problem. (*)

FRANCO FAVILLI (**)
1. We use the definitions and notations given in [8], [10] and [6] by Kohn and Folland-Kohn.

Let Ω be a relatively compact domain in \mathbb{C}^n; we say that Ω has a smooth boundary $\partial \Omega$ if, in a neighborhood of $\partial \Omega$, we can define a smooth real-valued function r such that

i) $r < 0$ in Ω, $r = 0$ on $\partial \Omega$ and $r > 0$ outside Ω

ii) $d^* r \neq 0$.

For each point $P \in \partial \Omega$, let us now consider the subspace of the complex tangent vectors

$$ T_{p,q}(\partial \Omega) = \left\{ L = \sum_{i=1}^{n} \xi_i \frac{\partial}{\partial z_i} : (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n, L(r)(P) = 0 \right\}, $$

where $(z_1, \ldots, z_n) \in \mathbb{C}^n$; the hermitian form on $T_{p,q}(\partial \Omega)$ defined by

$$ \langle d^* r, L \rangle = \sum_{i,j=1}^{n} \frac{\partial^2 r}{\partial z_i \partial z_j} \xi_i \overline{\xi_j}, $$

is said the Levi-form of r at P, where $L = \sum_{i=1}^{n} \xi_i (\partial / \partial z_i)$. We say that Ω is (weakly) pseudo-convex if the Levi-form is non-negative definite for each $P \in \partial \Omega$.

Let us consider now in Ω the inhomogeneous Cauchy-Riemann equation

$$ \partial^* u = \alpha, $$

where α is a (p, q)-form satisfying in Ω the compatibility condition $\partial^* \alpha = 0$. We recall that α is expressed as $\alpha = \sum_{I, J} \alpha_{I,J} dz^I \wedge d\bar{z}^J$ where I and J are strictly increasing sequences of positive integers of length p and q, respectively, so that if, for example, $I = (i_1, \ldots, i_p)$ then $dz^I = dz_{i_1} \wedge \ldots \wedge dz_{i_p}$.

Definition 1. The ∂-problem is said to be locally regular in a point $P \in \partial \Omega$ if, for a neighborhood U of P and any (p, q)-form α on Ω with $\partial^* \alpha = 0$, there exists a solution u (u is a $(p, q-1)$-form) in Ω of the equation $\partial^* u = \alpha$ such that

$$ \text{sing supp } u \subset \text{sing supp } \alpha. $$

In [8] Kohn gave an example of a pseudo-convex domain in \mathbb{C}^2 where the ∂-problem is not locally regular on the boundary. Here we want to note that, as the ∂ operator is elliptic, the local regularity holds in Ω (see [6], for example), so that the real problem is on the boundary.

Starting from the above example it is possible to find a necessary condition for the local regularity of the ∂-problem in Ω; precisely we have: