Intrinsic and Collective 166Er Levels Fed in the Decays of 166Hom ($T_{1/2} = 1200\text{ y}$) and 166Hog ($T_{1/2} = 26.8\text{ h}$).

C. ARDISON, V. BARCI, J. DALM ASSO, A. HACHEM and G. ARDISON
Laboratoire de Radiochimie, Université de Nice-Sophia Antipolis
28 Avenue Valrose, F06034 Nice-Cédex, France

(ricevuto il 16 Aprile 1991; approvato il 4 Giugno 1991)

Summary. — The radioactive decays of 166Ho isomers ($I^e = 7^-$ and 0^-) have been reinvestigated using high-resolution γ-ray detectors in single and coincidence measurements. Nine γ-lines are new, among the fifty-three γ-lines accurately measured belonging to 166Hom decay ($I^e = 7^-$); sixteen γ-lines were measured in 166Hog decay ($I^e = 0^-$) out of which 3 are new; moreover, γ-γ coincidence experiments using two germanium detectors were performed. A 166Er level scheme was built which interprets all γ-lines measured: two new levels are proposed to be fed in the 166Hom decay, namely the $K_1^e = 22^+$ at 785.5 keV and a $I^e = 4^-$ state at 1572.1 keV; in 166Hog decay, the $K_1^e = 0_2^+$ state in 166Er is confirmed, and a new level is found at 1812.8 keV ($I^e = 1^+$). Spin, parity and Nilsson orbitals assignments of the intrinsic 166Er states are discussed.

PACS 23.20.Lv – Gamma transitions and level energies.
PACS 23.40 - β decay; electron and muon capture.

1. – Introduction.

The levels of the strongly deformed 166Er nucleus have been studied in the past years using different reactions: single-nucleon transfer reactions, such as 166Er(d, t) [1], 165Ho(3He, d), 165Ho(x, t) [2, 3],

were preferred to evidence the two quasi-particle structure, while inelastic scattering 166Er(d, d') reaction [4] was used to observe collective excitations.

More recently, the 166Er rotational side bands were studied by Fields et al. [5] through the 166Dy(x, 2nγ) reaction; the 166Er ground-state band was excited up to spin $I = 16$, the γ-vibrational band up to $I = 14$ and some negative-parity bands up to spin $I^e = 9, 10^{-}$. The most extensive study concerning the electromagnetic decay properties of 166Er low-energy states is that of Reich and Cline[6] which have investigated both 166Hom ($T_{1/2} = 1200\text{ y}$) and 166Hog ($T_{1/2} = 26.8\text{ h}$) decays.

A more recent investigation of 166Hog decay performed by Allab et al. [7], on a
low-activity source, synthetized using a 252Cf source facilities, revealed the existence of new γ-lines. Besides, preliminary results of a 166Hom γ-ray spectrum measurements have been published elsewhere [8].

2. - Experimental details.

2'1. Radiochemical separations. – The long-lived 166Hom nuclide was provided by the L.M.R.I. (Laboratoire de Métrologie des Rayonnements Ionisants) as a standard HoCl$_3$ source with a nominal activity of 48.5 kBq. Preliminary measurements of γ-spectra showed a weak ($\approx 0.1\%$) contamination by long-lived rare-earth nuclides, such as 152Eu and 154Eu. Hence, a radiochemical separation was required to warrant the attribution of the new γ-lines observed.

The 166Hom source was put on the top of a 12.5 cm length and 0.05 cm2 area column, filled with a DOWEX 50W-X8 cation exchanger. The elution was performed, at room temperature, using a 0.51 M ammonium z-hydroxy-isobutyrate solution (HIB) adjusted to ρH = 3.3 with a NH$_3$, H$_2$O solution; the holmium fraction was first collected in less than 1.5 cm3 volume, as was stated by Smith and Hoffman [9], and the europium fraction passed after 14 CV (column volume). The holmium fraction was finally evaporated on a plastic disk for γ-counting.

As concerns the 166Ho6 decay isomer, the source was obtained by irradiation of a 2 mg weight Ho$_2$O$_3$ target with a neutron flux of 2.5×10^{13} n cm$^{-2}$ s$^{-1}$ and one-day irradiation time. The separation procedure was started after a 2 days cooling time, when the activity was approximately lowered to 1.5 GBq. The radiochemical separation was essentially the same that we used for 166Hom, except that the ρH of the HIB solution was adjusted to 3.1, to obtain a better separation from rare-earth impurities such as 175Yb, which was observed in the first fractions. The holmium fraction was evaporated to dryness on an aluminium plate.

2'2. Spectrometry. – The detectors used in γ-measurements were mainly a coaxial HPGe detector (EG&G Ortec), having a 17% relative efficiency and an energy resolution (FWHM) of 1.9 keV on the 1.33 MeV photopeak of 60Co and a LEPS (Low Energy Photon Spectrometer) of 2 cm3 active volume having a FWHM of 500 eV at the 122 keV γ-line of 57Co. An additional Ge(Li) detector of 8% relative efficiency was used for γ-γ coincidence experiments.

The pulses of the detectors were analysed with a 8192 channels ADCAM multi-channel buffer (EG&G Ortec), coupled with a PDP11/23 disk-based microcomputer. File spectra were transferred to a VAX 8530 computer and analysed with the well-known GAMANAL computer code [10].

3. – Measurements.

3'1. Single γ-spectra. – Owing to the weak specific activity of the 166Hom source, several γ-spectra were recorded in different geometries, with source to detector distances being limited to (0 ÷ 30) cm to control summing effects which are enhanced in the occurrence of strong γ-lines in cascade (see, for example, ref. [11]).

Figure 1 exhibits a typical 166Hom γ-spectrum measured with the 17% coaxial HPGe detector; in order to resolve close energy doublets, γ-spectra were also measured with the LEPS detector, with an energy dispersion of 0.1 keV/channel (fig. 2).