The Decay of 185W.

I. R. WILLIAMS and M. W. JOHNS

Department of Physics, Hamilton College, McMaster University
Hamilton, Canada

(ricevuto il 12 Marzo 1957)

Summary. — The decay of 185W has been studied with a magnetic β-ray spectrometer. The β spectrum and the electron spectrum from a cadmium converter have been examined down to electron energies of 30 keV. The ground state β spectrum has an allowed shape and an end-point of (430 ± 4) keV. Since no evidence is found for either internal conversion electrons or γ-rays associated with 55.6 or 125 keV transitions in 185Re, it is concluded that β transitions to such levels do not exist with branching ratios greater than $1.5 \cdot 10^{-3}$ and $9 \cdot 10^{-4}$, respectively.

Although there have been many investigations of the decay of 74-day 185W (1-4), there still seems to be disagreement as to whether the decay process is simple or complex. In particular, Bisi et al. (3) have proposed a decay scheme involving a $(7/2)^+$ level at 55.6 keV in 185Re which is fed by 10% of the β transitions of 185W and is de-excited by an M1 transition to the $d 5/2$ ground state of 185Re. Support for their proposal has been supplied by the coincidence experiments of Bhattacherjee and Raman (5) and of Mijotovic (6). From Coulomb excitation experiments (7) and from studies of

the decay of 185Os $^{(6,9)}$ there is good evidence for a $(7/2)^+$ level at 125 keV in 185Re which is also de-excited by an almost pure M1 transition $^{(7)}$. Since both of these γ-rays should be strongly converted, the authors have undertaken an examination of the low internal conversion spectrum of 185W in order to provide a sensitive test of the intensity of these transitions.

Tungsten metal was irradiated for a period of 47 days in the Chalk River reactor. The metal was dissolved in a solution of hydrofluoric and nitric acid and a β source prepared by deposition on a thin film of VYNS. The β spectrum was examined with a large double focusing β-ray spectrometer $^{(19)}$ set at a resolution of 0.87% on the 36.1 keV B line of Thorium C (see insert C of Fig. 1). The efficiency of the anthracene detector at this energy was very nearly 100%. A Fermi analysis of the β spectrum gave a straight line from

![Graph](image)

Fig. 1. – The low energy electron spectrum of 185W and 181W. Curve A: the low energy β spectrum; Curve B: the external conversion spectrum with a 0.3 mg/cm2 cadmium radiator; Curve C: 36.1 keV calibration line of Thorium C.

$^{(9)}$ S. V. Nablo: Neutron induced activities in Ir and Os: Ph.D. thesis (McMaster University, Hamilton, Ontario, Canada, 1956).