Corners of normal matrices

RAJENDRA BHATIA and MAN-DUEN CHOI∗

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute,
New Delhi 110 016, India
∗Department of Mathematics, University of Toronto, Toronto M5S 2E4, Canada
E-mail: rbh@isid.ac.in; choi@math.toronto.edu

To Kalyan Sinha on his sixtieth birthday

Abstract. We study various conditions on matrices B and C under which they can be the off-diagonal blocks of a partitioned normal matrix.

Keywords. Normal matrix; unitary matrix; norm; completion problem; dilation.

The structure of general normal matrices is far more complicated than that of two special kinds — hermitian and unitary. There are many interesting theorems for hermitian and unitary matrices whose extensions to arbitrary normal matrices have proved to be extremely recalcitrant (see e.g., [1]). The problem whose study we initiate in this note is another one of this sort.

We consider normal matrices N of size $2n$, partitioned into blocks of size n as

$$N = \begin{bmatrix} A & B \\ C & D \end{bmatrix}. \tag{1}$$

Normality imposes some restrictions on the blocks. One such restriction is the equality

$$\|B\|_2 = \|C\|_2 \tag{2}$$

between the Hilbert–Schmidt (Frobenius) norms of the off-diagonal blocks B and C. If T is any $m \times m$ matrix with entries t_{ij}, then

$$\|T\|_2 = \left(\sum_{j=1}^{m} |t_{ij}|^2 \right)^{1/2}.$$

The equality (2) is a consequence of the fact that the Euclidean norm of the jth column of a normal matrix is equal to the Euclidean norm of its jth row.

Replacing the Hilbert–Schmidt norm by another unitarily invariant norm, we may ask whether the equality (2) is replaced by interesting inequalities. Let $s_1(T) \geq \cdots \geq s_m(T)$ be the singular values of T. Every unitarily invariant norm $\|||T|||$ is a symmetric gauge function of $\{s_j(T)\}$ (see chapter IV of [1] for properties of such norms). Much of our concern in this note is with the special norms

$$\|T\|_2 = (\text{tr} \ T^*T)^{1/2} = \left(\sum_{j=1}^{m} s_j^2(T) \right)^{1/2}.$$
and
\[\|T\| = s_1(T) = \sup_{x \in \mathbb{C}^m, \|x\|=1} \|Tx\|. \] (3)
The latter is the norm of \(T\) as a linear operator on the Euclidean space \(\mathbb{C}^m\). Clearly
\[\|T\| \leq \|T\|_2 \leq \sqrt{m} \|T\|, \] (4)
for every \(m \times m\) matrix \(T\).

If the matrix \(N\) in (1) is hermitian, then \(C = B^*\), and hence, \(|||C||| = |||B|||\) for all unitarily invariant norms. If \(N\) is unitary, then \(AA^* + BB^* = A^*A + C^*C = I\). Hence, the eigenvalues \(\lambda_j\) satisfy the relations
\[\lambda_j(BB^*) = \lambda_j(I - AA^*) = 1 - \lambda_j(AA^*) \]
\[= 1 - \lambda_j(A^*A) = \lambda_j(I - A^*A) = \lambda_j(C^*C). \]
Thus \(B\) and \(C\) have the same singular values, and again \(|||B||| = |||C|||\) for all unitarily invariant norms.

This equality of norms does not persist when we go to arbitrary normal matrices, as we will soon see. From (2) and (4) we get a simple inequality
\[|||B||| \leq \sqrt{n} |||C|||. \] (5)
One may ask whether the two sides of (5) can be equal, and that is the first issue addressed in this note.

When \(n = 2\), it is not too difficult to construct a normal matrix \(N\) of the form (1) in which \(\|B\| = \sqrt{2}\|C\|\). One example of such a matrix is
\[
N = \begin{bmatrix}
 0 & 0 & \sqrt{2} & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 0 & 0
\end{bmatrix}.
\] (6)
When \(n = 3\), examples seem harder to come by. One that preserves some of the features of (6) is given by the matrix
\[
N = \begin{bmatrix}
 0 & \sqrt{\frac{2}{\sqrt{3}} - 1} & 0 & \sqrt{3} & 0 & 0 \\
 0 & 0 & \sqrt{\frac{2}{\sqrt{3}}} & 0 & 0 & 0 \\
 \sqrt{\frac{2}{\sqrt{3}} + 1} & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & \sqrt{\frac{2}{\sqrt{3}} - 1} & 0 \\
 0 & 1 & 0 & 0 & \sqrt{\frac{2}{\sqrt{3}}} & 0 \\
 1 & 0 & 0 & 0 & 0 & \sqrt{\frac{2}{\sqrt{3}}}
\end{bmatrix}.
\] (7)