ORDER OF MEAN APPROXIMATION BY MIXED QUASI HERMITE–FEJER INTERPOLATION

Shen Xiechang
(Peking University, China)
Wang Ziyu
(Henan University, China)

Received June 30, 1991 Revised Sep. 9, 1992

Abstract

In this paper we introduce a new kind of the mixed Hermite–Fejér interpolation with boundary conditions and obtain the mean approximation order. Our results include a new theorem of Varma and Prasad. Besides, we also get some other results about the mean approximation.

§ 1. Introduction

Let \(X_{n+2} = \{x_k = \cos\theta_k = \cos\frac{k\pi}{n+1} : 0 \leq k \leq n+1 \} \) be all zeros of the polynomial

\[
(1 - x^2) U_n(x) ,
\]

where \(U_n(x) = \frac{\sin((n+1)\theta)}{\sin\theta} \), \((x = \cos\theta, \theta \in [0,\pi])\) is the \(n \)-th Chebyshev polynomial of the second kind. For a non-negative integer \(r \), denote by \(C^r[-1,1] \) and \(\mathbb{R}(\mathbb{C}) \) the sets of the functions continuously differentiable to \(r \)-times and the real (complex) polynomials with degree at most \(r \), respectively. Let \(q, q' : 2q + 1 \geq q' \geq 0 \) be two integers. For \(f \in C^q[-1,1] \), consider the following interpolation problem:

\[
\begin{align*}
Q_{N_1}(f, x_k) &= f^{(j)}(x_k), 0 \leq j \leq q', 1 \leq k \leq n, \\
Q_{N_1}(f, x_k) &= 0, q' + 1 \leq j \leq 2q + 1, 1 \leq k \leq n, \\
Q_{N_1}(f, \pm 1) &= f^{(j)}(\pm 1), 0 \leq j \leq \min(q', q) = q_0, \\
Q_{N_1}(f, \pm 1) &= 0, q_0 + 1 \leq j \leq q, \\
Q_{N_1}(f) \in \prod_{N_1}(\mathbb{R}), N_1 = 2(q + 1)(n + 1) - 1.
\end{align*}
\]

It is well-known that there exists unique \(Q_{N_1}(f) \) satisfying the problem(1). We call \(Q_{N_1}(f) \) the mixed quasi Hermite–Fejér interpolation based on \(X_{n+2} \). Clearly, when
\[q = q' = 0 \quad Q_{N_1}^{(f)}(f) = Q_{2n+1}^{(f)}(f) \] is just the usual quasi Hermite–Fejer interpolation\[3\], and moreover when \(q = 1 \) and \(q' = 0 \), \(Q_{N_1}^{(f)}(f) = \wedge_{n,2}^{(f,x)} \) is the so-called higher quasi Hermite–Fejer type interpolation, introduced by Sharma and Tzimbalario\[9\]. However, as far as we know, the other cases haven’t been studied.

There have been many works on the polynomial \(Q_{2n+1}^{(f)} \). In [3], Szasz proved that \(Q_{2n+1}^{(f)} \) converges uniformly on \([-1,1]\) to \(f \in C[-1,1] \). Later, the order of the convergence was given by Saxena and Mathur\[4\]:

\[
|Q_{2n+1}^{(f,x)}(f,x) - f(x)| = O\left(\frac{1}{n^{\alpha}} \sum_{k=1}^{n} \omega(f, \frac{1-x^2}{k}) + \frac{1}{k^2}\right).
\]

(1.1)

Here and after, "\(\alpha \)" is independent of \(f \) and \(n \), \(\omega(f, \zeta) \) is the modulus of continuity of \(f \) on \([-1,1]\).

For \(\wedge_{n,2}^{(f,x)} \) in [9], it was proved that \(\wedge_{n,2}^{(f,x)} \) converges to \(f \in C[-1,1] \) uniformly on \([-1,1]\), however there was no estimate of approximation order. Recently, Varma and Prasad’s result\[11\] has stated that under the weighted \(L^p \) metrics, the approximation order of (1.1) can be improved by

\[
\|Q_{2n+1}^{(f)}(f) - f\|_{p,w} = O(\omega(f, \frac{1}{n})), \quad 0 < p < \infty.
\]

(1.2)

Here for \(g \in C[-1,1], 0 < p < \infty \), denote \(\|g\|_{p,w} \) by

\[
\left(\int_{-1}^{1} |g(x)|^p w(x) dx\right)^{\frac{1}{p}}, \quad w(x) = (1-x^2)^{-\frac{1}{2}}.
\]

But, in [1], (1.2) was proved only for \(p = 2 \) and \(p = 4 \). Furthermore we can easily see that it is very difficult to show (1.2) for all \(p, 0 < p < \infty \) in view of [1]. So, how to prove (1.2) for all \(p, 0 < p < \infty \) is still an open problem. The main purpose of this paper is to answer this problem by using a new method. In fact we will claim the following two results:

Theorem 1. Let \(q, q' : 2q + 1 \geq q' \geq 0 \) be two integers and \(f \in C[-1,1] \), and let \(Q_{N_1}^{(f)}(f) \) be determined by (1). Then for all \(0 < p < \infty \), and \(0 \leq j \leq q' \) we have

\[
\|Q_{2n+1}^{(f)}(f,x) - \wedge_{n,2}^{(f,x)}(f,x)\|_{p,w} = O\left(n^{\frac{j+q'}{p}}(E_{N_1,2}^{(f,x)}(f,q') + (2q + 1 - q')\omega(f^{(q')}, \frac{1}{n}))\right)
\]

(1.3)

Here for \(g \in C[-1,1], E_{r,g}(g) = \inf\{\|g - p\|_\infty : p \in \prod_{r}(R)\} \) and \(\|g\|_\infty = \max_{-1 < x < 1} |g(x)| \).

From this it follows that when \(q = q' = 0 \) (1.2) holds for all \(p, 0 < p < \infty \), by (1.3) of Theorem 1, and then the result of Varma–Prasad [1] as the above is included, and that when \(q = 1 \) and \(q' = 0 \), \(\wedge_{n,2}^{(f,x)}(f) \) has mean approximation order \(\omega(f, \frac{1}{n}) \).