ON THE LINEAR APPROXIMATION OPERATOR WHICH
HAS ALGEBRAIC PRECISION OF POINTED ORDER

Di Jizheng
(Shanxi Teachers' University, China)

Received June 10, 1991 Revised Mar. 20, 1992

Abstract

In this paper, we construct an operator which has algebraic precision of pointed order and approximates
to \(f \in C[0,1] \) uniformly on \([0,1]\).

It is interesting to raise algebraic precision in linear approximation. We know that it reaches algebraic precision at most one order in positive linear approximation. Can we construct a linear approximation operator which has algebraic precision of order \(m \) for any fixed integer \(m \geq 2 \)? In the following, we give a definite answer for this question. The result is enlightened by the combinations of Bernstein operators (see Butzer [1], Chen Wenzhong [2], Ditzian [3]).

Theorem. For any integer \(m \geq 2 \), there exist constants \(c_i, d_i \) and function \(\lambda_i(n) \) of \(n \), where \(i = 1, 2, \ldots, p, p = (m + 1)(m + 2) / 2, \sum_{i=1}^{p} \lambda_i(n) \equiv 1 \) and for any \(1 \leq i \leq p, \lambda_i(n) \) converges \((n \to \infty)\), such that the linear operator

\[
B_n(f,x) = \sum_{i=1}^{p} \lambda_i(n) \sum_{k=0}^{n} \binom{n}{k} f \left(k + c_i \frac{n^{(m-1)/m}}{n + d_i n^{(m-1)/m}} \right) x^k (1 - x)^{n-k}
\]

has algebraic precision of order \(m \), namely for any polynomial \(P_m(x) \) of degree \(m \), we have \(B_n(P_m,x) \equiv P_m(x) \) \((n \geq m, x \in [0,1])\), and \(B_n(f,x) \to f(x) \) \((n \to \infty)\) uniformly on \([0,1]\) for any \(f \in C[0,1] \).

Proof. Let \(B_n(f,x) \) be Bernstein polynomial

\[
B_n(f,x) = \sum_{k=0}^{n} \binom{n}{k} f \left(\frac{k}{n} \right) x^k (1 - x)^{n-k},
\]

* supported by the Science and Technology Fund of Shanxi Youth.
and

\[B_{n,t}(f; t) = \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k}{n+t}\right) x^k (1-x)^{n-k}, \quad s \leq t, \]

then for any integers \(n \geq m \geq 2 \)

\[B_n(x^m, x) = \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k}{n+t}\right) x^k (1-x)^{n-k} \]

\[= \sum_{k=0}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} k^{m-1} \binom{n}{k} x^k (1-x)^{n-k} \]

\[= \sum_{k=0}^{n} \frac{(n-1)!}{k!(n-k)!} k^{m-1} x^{k+1} (1-x)^{n-1-k} \]

\[= \frac{x(n-1)^{n-1}}{m-1} B_{n-1}(x^m, x) + \binom{m}{1} \frac{(n-1)^{m-2}}{m-1} x B_{n-1}(x^m, x) + \cdots + \frac{1}{m-1} x \]

\[= \frac{(n-1)(n-2)\ldots(n-m+1)}{m-1} x^{m} + O(1) \frac{1}{n} x^{m-1} + O(1) \frac{1}{n^2} x^{m-2} + \cdots + O(1) \frac{1}{n^{m-1}} x. \]

By inductive method we can prove that \(O(1)'s \) are bounded quantities, \(O(1) \neq o(1)(n \to \infty) \) and may be not equal to each other, then

\[B_{n,t}(x^m, x) = \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k+s}{n+t}\right) x^k (1-x)^{n-k} \]

\[= \frac{1}{n+t} \sum_{k=0}^{n} \binom{n}{k} \left(k^{m} + \binom{m}{1} k^{m-1} s + \cdots s^{m} \right) x^k (1-x)^{n-k} \]

\[= \frac{1}{n+t} \left\{ n^m B_n(x^m, x) + \binom{m}{1} n^{m-1} s B_n(x^m, x) + \cdots + \binom{m}{m-1} n^{m-1} B_n(x^m, x) + s^{m} \right\} \]

\[= \frac{1}{n+t} \left\{ n \left[\frac{(n-1)(n-2)\ldots(n-m+1)}{n^{m-1}} x^{m} + O(1) \frac{1}{n} x^{m-1} + \cdots + O(1) \frac{1}{n^{m-1}} x \right] \right. \]

\[+ \binom{m}{1} n^{m-1} s \left[O(1) x^{m-1} + O(1) \frac{1}{n} x^{m-2} + \cdots + O(1) \frac{1}{n^{m-1}} x \right] + \cdots + \binom{m}{m-1} n^{m-1} s^{m-1} \]

\[= \frac{1}{n+t} \left\{ n(n-1)\ldots(n-m+1)x^{m} + n^{m-1}(O(1) + O(1)s)x^{m-1} \right. \]

\[+ n^{m-2}(O(1) + O(1)s + O(1)s^2)x^{m-2} + \cdots + n(O(1) + O(1)s + \cdots + O(1)s^{m-1})x + s^{m} \} \right\}. \]

Let

\[B_n^{*}(f,x) = \sum_{i=1}^{s} \lambda_i(n) B_{n,i} f(x), \]

\[B_{n,t}(f,x) = \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k+s}{n+t}\right) x^k (1-x)^{n-k}, \quad s \leq t, \quad i = 1, 2, \ldots, p, \]