SIMULTANEOUS APPROXIMATION TO
A DIFFERENTIABLE FUNCTION AND ITS DERIVATIVES
BY LAGRANGE INTERPOLATING POLYNOMIALS*

T. F. Xie
(China Institute of Metrology, China)

S. P. Zhou
(University of Alberta, Canada)

Received Sept. 10, 1993 Revised Mar. 18, 1994

Abstract

This paper establishes the following pointwise result for simultaneous Lagrange interpolating approximation: Let \(f \in C^{q}_{[-1,1]} \) and \(r = \left\lfloor \frac{q + 2}{2} \right\rfloor \), then
\[
\left| f^{(k)}(x) - P_n^{(k)}(f,x) \right| = O(1) \Delta_n^{q-k}(x) \| f \|_q + \| f \|_q \Delta_n^{q-k}(x), \quad 0 \leq k \leq q,
\]
where \(P_n(f,x) \) is the Lagrange interpolating polynomial of degree \(n + 2r - 1 \) of \(f(x) \) on the nodes \(X_n \cup Y_n \) (see the definition of the next). \(\Delta_n(x) = \frac{1-x^2}{n} + \frac{1}{n^2} \).

1. Introduction

In recent years, many scholars published a lot of papers on simultaneous approximation to differentiable functions and their derivatives by interpolating polynomials (see [2], [5], [7], [9] etc.). Among these works, [2] proved the following interesting result. Let \(c > 0 \) be a given real number,
\[
X_n := \{-1 < x_n < x_{n-1} < \cdots < x_1 < 1\},
\]
\[
Y_n := \{-1 = t_0 \leq t_1 \leq t_2 \leq \cdots \leq t_{r-1} \leq -1 + c / n^2, 1 - c / n^2 \leq t_r \leq \cdots \leq t_{2r-2} \leq s_{2r-1} = 1\}.
\]

* The second named author was supported in part by an NSERC Postdoctoral Fellowship, Canada and a CRF Grant, University of Alberta.
Write

\[l_k = \frac{\omega_n(x)}{\omega_n'(x_k)(x - x_k)}, \]

where

\[\omega_n(x) = \prod_{i=1}^{n}(x - x_i), \]

\[\|L_n\| = \max_{|x| < 1} \sum_{k=1}^{n} |l_k(x)|, \]

\[\|L_n^*\| = \max_{|x| < 1} \sum_{k=1}^{n} \frac{1 - x_k^2}{1 - x_k^2} |l_k(x)|. \]

For \(f \in C_{[-1,1]}^q \) (that is, \(f(x) \) has \(q \) continuous derivatives on \([-1,1]\)), let \(P_n(f,x) \) denote the Lagrange interpolating polynomial of degree \(n + 2r - 1 \) of \(f \) on the nodes \(X_n \cup Y_n \). When \(X_n \cup Y_n \) has coalescing nodes, the derivatives of \(P_n(f,x) \) interpolate the derivatives of \(f(x) \) on these nodes with the same multiplicity, that is, for example, if \(t_i = t_{i+1} = \cdots = t_{i+q} \), then \(f^{(i)}(t_j) = P_n^{(i)}(t_j), i = 0,1,\ldots,q. \)

With all the above notations, [2] proved the following theorem BK.

Theorem BK. Let \(f \in C_{[-1,1]}^q, r = \left[\frac{q+1}{2} \right] \). Then for \(k = 0,1,\ldots,q \), the following estimates hold:

a) \(\|f^{(k)}(x) - P_n^{(k)}(f,x)\| = O(1)n^{-q-k}w(f^{(q)}_{\text{max}})\|L_n\| \), when \(q \) is an even number;

b) \(\|f^{(k)}(x) - P_n^{(k)}(f,x)\| = O(1)n^{-q-k-1}w(f^{(q)}_{\text{max}})\|L_n\| \), when \(q \) is an odd number;

c) \(\|f^{(k)}(x) - P_n^{(k)}(f,x)\| = O(1)n^{-q-k}w(f^{(q)}_{\text{max}})\|L_n^*\| \), when \(q \) is an odd number,

where \(w(f,t) \) is the modulus of continuity of \(f(x) \).

It is well-known that \(\|L_n\| \geq \frac{\log n}{8\sqrt{\pi}} \). However when \(X_n \) is taken to be the zeros of the Chebyshev polynomial \(T_n(x) = \cos(n\arccos x) \), one has that \(\|L_n\| = O(1)\log n \). Also, one has \(\|L_n^*\| = O(1)\log n \) in this case. Therefore, Theorem BK contains those results of [7] and [8] as well as [1] as special cases.

We already knew that, in the approximation of continuous functions by polynomials, there are often better estimates on the endpoints of the interval considered. For example, [10] showed that, for \(f \in C_{[-1,1]}^q \), there are polynomials \(p_n(x) \) of degree \(n \) such that...