BOUNDARY VALUES VERSUS DILATATIONS OF HARMONIC MAPPINGS

By

D. BSHOUTY AND W. HENGARTNER

Abstract. This article is divided into two parts. In the first part, we consider univalent harmonic mappings from the unit disk U onto a Jordan domain Ω whose dilatation functions $a = f_z/f_{\bar{z}}$ have modulus one on an interval of the unit circle. The boundary values of f depend very strongly on the values of $a(e^{it})$. A complete characterization of the inverse image $f^{-1}(q)$ of a point q on $\partial \Omega$ is given. We then consider the case where the dilatation function $a(z)$ is a finite Blaschke product of degree N. It is shown that in this case, Ω can have at most $N+2$ points of convexity. Finally, we give a complete characterization of simply connected Jordan domains Ω with the property that there exists a nonparametric minimal surface over Ω such that the image of its Gaussian map is the upper half-sphere covered exactly once.

1. Introduction

Let $S = (u, v, s)$, $s = g(u, v)$, be a nonparametric surface defined over a simply connected proper subdomain Ω of the complex plane C. Then S is a minimal surface if and only if there exists a univalent complex-valued harmonic mapping $f = u + iv$ from the unit disk U onto Ω such that $(s_2)^2 = -f_z f_{\bar{z}}$. Note that f can be uniquely expressed in the form $f = h + g$, $g(0) = 0$, where h and g belong to the linear space $H(U)$ of analytic functions on U. Without loss of generality, we may assume that f is orientation-preserving (if not, consider the mapping $f(\bar{z})$). It follows that the (second) dilatation function $a = f_z/f_{\bar{z}} = g'/h'$ belongs to $H(U)$ and satisfies $|a| < 1$ on U. Historically, the function $i\sqrt{a}$ is called the Weierstrass parameter of the minimal surface and the Gauss map of S is given by the normal vector

$$\vec{N} = \frac{(2 \text{ Im } \sqrt{a}, 2 \text{ Re } \sqrt{a}, 1 - |a|)}{1 + |a|}.$$

The study of nonparametric minimal surfaces over Ω with a given Gauss map leads to the problem of finding univalent harmonic maps from U onto Ω which are solutions of the elliptic partial differential equation

$$(1.1) \quad f_{\bar{z}}(z) = a(z)f_z(z), \quad z \in U.$$

Any nonconstant solution of (1.1) is an orientation-preserving harmonic mapping and any univalent solution is locally quasiconformal on U. Observe that the modulus of the dilatation function $a(z)$ may approach one as z tends to the unit
In general, there may exist no univalent solution of (1.1) from U onto Ω. Such, for example, is the case if Ω is a strictly convex domain and $a(z)$ is a finite Blaschke product [4]. The following result was obtained in [3].

Theorem A Let Ω be a simply connected Jordan domain of \mathbb{C}, $w_0 \in \Omega$, and let $a(z) \in H(U)$, $|a| < 1$. Then there exists a univalent solution f of (1.1) such that $f(0) = w_0$, $f'(0) > 0$, $f(U) \subset \Omega$ and, except for a countable set E, the nonrestrictive limits $f^*(e^{it}) = \lim_{n \to \infty} f(z)$ exist and are on $\partial \Omega$. For $e^{it} \in E$, the cluster set $C(e^{it}, f)$ of f is a linear line segment in Ω joining two points of $\partial \Omega$. If $|a(z)| \leq k < 1$ on U, then $f(U) = \Omega$ and f extends to a homeomorphism from the closed unit disk \bar{U} onto $\bar{\Omega}$.

In the first part of this article, Section 2, we consider the case in which $a(z)$ admits an analytic extension across an interval J of the unit circle ∂U such that $|a| \equiv 1$ on J. The first main result, Theorem 2.2, shows that the boundary values $f^*(e^{it})$ on J depend very strongly on the values of $a(e^{it})$. The second main result of this section is Theorem 2.13, which relates the inverse image $(f^*)^{-1}(q)$ of a boundary point $q \in \partial \Omega$ to the total change of $\arg a(e^{it})$ corresponding to q. We present several examples which illustrate these results.

In the second part, Section 3, we study univalent harmonic mappings from the unit disk U onto a Jordan domain Ω whose (second) dilatation function $a(z)$ is a finite Blaschke product. Our first main result is Theorem 3.3, which states that Ω has to be a concave regulated domain which contains at most $N + 2$ points of convexity. Moreover, the number of points of convexity plus the number of full resting points is equal to $N + 2$.

Let Ω be a simply connected Jordan domain of \mathbb{C}. In view of Theorem A, we shall define $f^*(e^{it}) = f^*(e^{i(t+\theta)})$ whenever the cluster set $C(e^{it}, f)$ is the line segment in Ω from $f^*(e^{i(t-\theta)})$ to $f^*(e^{i(t+\theta)})$. In other words, we define $f^*(e^{it})$ as a right-continuous function on ∂U.

Let Γ be a closed Jordan curve in \mathbb{C}. We say that an orientation-preserving mapping $f^*(e^{it})$ from the unit circle ∂U into Γ is a **quasihomeomorphism** from ∂U into Γ if its image contains at least three noncollinear points of Γ and if it is the pointwise limit of a sequence of orientation-preserving homeomorphisms from ∂U onto Γ. If, in addition, the linear segments from $f^*(e^{it-\theta})$ to $f^*(e^{it+\theta})$ are parts of Γ, then we call f^* a **quasihomeomorphism** from ∂U onto Γ. Observe that the functions $f^*(e^{i(t-\theta)})$ and $f^*(e^{i(t+\theta)})$ are always well defined. To see this, let ϕ be a conformal (univalent) mapping from U onto the Jordan domain G bounded by Γ. Then $\arg \phi^{-1} \circ f^*$ is a nondecreasing function on ∂U. Since ϕ is a homeomorphism on ∂U, the assertion follows. Finally, a continuous quasihomeomorphism from ∂U onto Γ is called a **weak homeomorphism**. A weak homeomorphism has the property that the inverse image $(f^*)^{-1}(q)$ of each point q on $\partial \Omega$ is a closed interval in ∂U.