COEFFICIENTS OF MULTIVALENT SYMMETRIC FUNCTIONS OF BOUNDED BOUNDARY ROTATION

A. K. MISHRA* - M. CHOUDHURY**

In this paper the sharp coefficient estimate problem for the classes $C_p(\beta, m)$ and $V_p(k, m)$ of multivalent close-to-convex functions of order β and multivalent functions of bounded boundary rotation of at most $k\pi$, whose functions are given by m-fold symmetric gap series, have been discussed respectively for $\beta \geq 1 - \frac{p}{m} > 0$ and $k \geq 2(m/p)$. Moreover, it is shown that every function in $V_p(k, m)$ are p-valent close-to-convex; hence p-valent; if $k < 2 \left(1 + \frac{m}{p}\right)$.

Key Words and phrases. m fold gap series, p-valent close-to-convex functions of order β, multivalent functions of bounded boundary rotation, coefficient estimate etc.

1. Introduction.

Let E denote the unit disc $\{z : |z| < 1\}$. For $p = 1, 2, 3, \ldots$, let A_p denote the class of functions f analytic in E and given by

AMS (MOS) Subject classifications: (1980). 30C45.

* The research of the first author was supported by UGC New Delhi Major Research Project Grant No F-8-2/92 (SR-I), D 9.6.93.

** The research was done while the second author visited Berhampuv University from S.K.C.G. College, Paralakemundi under U.G.C. New Delhi, Teacher Fellowship Scheme, Grant No F. 9-22/92 (CD-4) D 25.10.1993.
the power series

\[f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n. \]

A function \(f \) in \(A_p \) is said to be \(p \)-valent starlike, written as \(f \in Stp \), if

\[\Re \left\{ \frac{z f'(z)}{f(z)} \right\} > 0 \quad \text{for} \quad z \in E. \] [10]

We say that a function \(f \) is \(p \)-valently close-to-convex of order \(\beta \), write as \(f \in C_p(\beta) \), \(\beta > 0 \), if there exists a function \(s \) in \(Stp \) and a real number \(\alpha \) such that

\[\arg e^{i\alpha} \frac{zf'(z)}{s(z)} < \beta \frac{\pi}{2}. \] [12]

Note that \(C_1(1) \) is the classical family of univalently close-to-convex functions introduced by Kaplan [3], \(C_p(1) \) is the family of \(p \)-valently close-to-convex functions studied by Livingston [6] and \(C_1(\beta) \) is the family of close-to-convex functions of order \(\beta \) studied by Pommerenke [9]. Finally, for \(k \geq 2 \), let \(V_p(k) \) denote the subclass of functions \(f \) in \(A_p \) for which there exists a locally univalent function \(g \) of boundary rotation at most \(k\pi \) [8] such that

\[f'(z) = pz^{p-1}(g'(z))^p, \quad f(0) = 0, \quad \text{for} \quad z \in E. \] [13]

Note that \(V_p(k) \) is a subclass of the class of multivalent functions of bounded boundary rotation studied by Leach [5], viz: functions having \((p-1)\) critical points located only at the origin and \(V_1(k) \) is the class of locally univalent functions of boundary rotation at most \(k\pi \) [8].

For \(m = 1, 2, 3, \ldots \), let \(Stp(m) \), \(C_p(\beta, m) \) and \(V_p(k, m) \), respectively denote the subclasses of \(Stp \), \(C_p(\beta) \) and \(V_p(k) \) whose functions are given by the \(m \)-fold symmetric gap series

\[f(z) = z^p + \sum_{k=1}^{\infty} a_k z^{mk+p}, \quad z \in E. \] [14]