INVERSIVE PLANES WITH CIRCLES DETERMINED
BY TANGENTS

RAFAEL ARTZY

In an inversive plane \(J \), one derived affine plane is such that every circle is uniquely determined by straight line tangents. The validity of 4-point Pascal conditions on one of the circles then plays a role in the coordinatization of \(J \).

The purpose of this paper is the study of inversive planes \(J \) in whose derived affine plane every circle is uniquely determined by two straight line tangents from each of two fixed pencils of parallels. These pencils are then used to set up a coordinate system in the derived plane of \(J \). After postulating transitivity of the derived plane under all dilatations, the coordinate structure becomes a skewfield. The plane \(J \) is then of Hering type III2. Now the question arises what additional conditions, as weak as possible, to impose for making \(J \) miquelian. Of course, Miquel’s condition, or Pascal’s full condition on one of the circles would do, but it turns out that it suffices to postulate 4-point Pascal conditions on one of the circles, even with the restriction that 3 of the 4 points on the circle are fixed. It is well known [5] that the 5-point Pascal condition is equivalent to the full 6-point condition. However, not much has been known on the 4-point Pascal condition, which now turns out to be able to play an important role in the coordinatization of an inversive plane over a field, once the derived affine plane is desarguesian. The paper concludes with a remark showing that the 4-point Pascal condition used leads to a construction which makes the circle into a conic in the sense of Steiner.

The author wishes to thank members of the Mathematical Seminar of the University of Hamburg for fruitful conversations on the subject of this paper.
1. Definitions.

An inversive planes J consists of points and subsets of points called circles such that:

I) 3 distinct points determine a unique circle.

II) Given a circle c, a point P on c, and a point Q not on c. Then there is a unique circle d containing Q and such that $c \cap d = \{P\}$.

III) Each circle contains a point. There exist 4 points not on the same circle.

The following definitions and notations will be used, most of them in accordance with [4]:

Circles having just one point in common are called tangent. The set of all circles tangent at a point P is called a pencil, P its carrier. The pencil with carrier P containing a circle c is called Pc. The set of all circles containing distinct points P and Q is called the bundle (P, Q). The circle through A, B, C is called ABC. The «derived» plane containing all points of J except P, and all circles through P, is called J_F.

In addition, we will consider the following axioms.

IV) J contains a point X such that in J_X no diagonals of any parallelogram are parallel.

V') For every pencil Pa and for every circle c not through P, there are exactly 2 circles in Pa that are tangent to c.

The following is a weaker form of V'.

V) In J there is a circle k not containing X such that:

(i) there is a pencil π_1 with carrier X containing exactly two circles a_1 and a_2 tangent to k;

(ii) if $a_1 \cap a_2 = : P_1, a_2 \cap k = : P_2$, then the pencil $X(XP_1P_2) = : \pi_2$ contains exactly two circles b_1 and b_2 tangent to k;

(iii) the pencil P_1a_1 contains only the two circles k and a_1 tangent to a_2;

(iv) every circle of J not containing X has exactly two circles from π_1 tangent to it.

Obviously V' implies V. Every plane satisfying I through IV and V' is an (F)-plane [2]. Planes satisfying Axiomes I through V will be called T-planes. They are not necessarily (F)-planes.