WEAK TYPE INEQUALITIES OF MAXIMAL HANKEL CONVOLUTION OPERATORS(*)

JORGE J. BETANCOR - LOURDES RODRÍGUEZ-MESA

In this paper we characterize weak type (1,1) inequalities for Hankel convolution operators by means of discrete methods.

1. Introduction.

\[h_\mu(f)(y) = \int_0^\infty (xy)^{-\mu} J_\mu(xy) f(x) d\gamma(x), \quad y \in (0, \infty), \]

where \(d\gamma(x) = x^{\mu+1} dx \) and \(J_\mu \), as usual represents the Bessel function of the first kind and order \(\mu \). Throughout this paper we will assume that \(\mu \) is greater than \(-1/2\). We consider the space \(L_p(\gamma) \), \(1 \leq p < \infty \), that consists of all those measurable functions \(f \) on \((0, \infty) \) such that

\[\|f\|_p = \left(\int_0^\infty |f(x)|^p d\gamma(x) \right)^{1/p} < \infty. \]

(*) Partially supported by DGICYT Grant PB 94-0591 (Spain).
A.M.S. Subject Classification: 42B25.
Key words and phrases: weak-type inequality, maximal Hankel convolution operators.
It is well-known that \(L_p(y) \) endowed with the norm \(\| \cdot \|_p \) is a Banach space.

The convolution operation for the \(h_\mu \)-transformation is defined as follows (see [3], [6], [8], [9], [11], [12] and [13], amongst others). Let \(f \) and \(g \) be in \(L_1(y) \). The Hankel convolution \(f \# g \) of \(f \) and \(g \) is defined by

\[
(f \# g)(x) = \int_0^\infty (\tau_x f)(z)g(z)\,dy(z), \quad \text{a.e. } x \in (0, \infty),
\]

where the Hankel translated \(\tau_x f \) of \(f \) by \(x \in (0, \infty) \) is

\[
(\tau_x f)(z) = \int_0^\infty f(y)dW_{x,z}(t), \quad \text{a.e. } z \in (0, \infty),
\]

and being, for every \(x, z \in (0, \infty) \), \(W_{x,z}(y) \) the probability measure defined by

\[
dW_{x,z}(y) = a_\mu \frac{\Delta(x, \gamma, z)^{2\mu-1}}{(xyz)^{2\mu}}\,dy(y),
\]

where \(a_\mu = 2^{1-2\mu}\Gamma(\mu + 1)\Gamma(\mu + 1/2)^{-1}\pi^{-1/2} \) and

\[
\Delta(x, y, z) = \begin{cases}
[((x + z)^2 - y^2)(y^2 - (x - z)^2)]^{1/2}, & \text{when } |x - z| < y < x + z, x, z \in (0, \infty) \\
0, & \text{otherwise}.
\end{cases}
\]

By defining on \(L_1(y) \) the Hankel convolution, \(L_1(y) \) becomes a commutative Banach algebra ([12]).

Let \((k_j)_{j=1}^\infty \) be a sequence in \(L_1(y) \). We define the maximal Hankel convolution operator associated to \((k_j)_{j=1}^\infty \) by

\[
K^* f(x) = \sup_{j \in \mathbb{N}} |(k_j \# f)(x)|, \quad f \in L_1(y) \text{ and } x \in (0, \infty).
\]

In this paper, inspired in results of [1], [7] and [10], we characterize (Theorem 2.1) the weak type (1,1) inequality for the operator \(K^* \) by means of the weak type (1,1) inequalities for the operators defined by

\[
\sup_{j \in \mathbb{N}} |K_{x_1, \ldots, x_n, k_j}(x)| \quad \text{where}
\]

\[
(K_{x_1, \ldots, x_n} f)(x) = \left| \sum_{i=1}^n (\tau_{x_i} f)(x) \right|, \quad x \in (0, \infty) \text{ and } f \in L_1(y),
\]