THE QUASI-STATIC PROBLEM
FOR AN ELECTROMAGNETIC CONDUCTOR

ROBERTA NIBBI

Viene studiato il problema quasi-statico per un sistema elettromagnetico con una condizione al contorno dissipativa e con memoria. Si dimostra che se il nucleo di memoria soddisfa un'opportuna restrizione, traduzione in termini analitici della dissipatività locale della frontiera, allora il problema quasi-statico ammette una ed una sola soluzione debole.

1. Introduction.

In this paper we are going to study the quasi-static problem for an electromagnetic field, which describes the behaviour of a "good" conductor, that is of a medium with a high but finite electric conductivity. Because of the dissipation on the boundary, the condition which describes such a behaviour must satisfy a relation which imposes a restriction on the relative memory kernel. The aim of this paper is to show how this restriction is important in the proof of an existence and uniqueness theorem.

Consider a simply connected domain (i.e. a domain such that every continuous closed surface can be deformed continuously until it has shrunk to a point) $\Omega \subset \mathbb{R}^3$ with a bounded boundary $\partial \Omega$ of class C^2; the evolution of the electromagnetic field in $Q = \Omega \times (-\infty, +\infty)$
is ruled by the well-known Maxwell’s equations:

\[
\begin{align*}
\frac{\partial D}{\partial t} - \nabla \times H &= -J \quad \nabla \cdot D = \rho \\
\frac{\partial B}{\partial t} + \nabla \times E &= I \quad \nabla \cdot B = 0
\end{align*}
\]

(1.1)

If we assume that the material is a perfect dielectric, then the electric intensity \(E \), the magnetic intensity \(H \), the electric flux density \(D \) and the magnetic flux density \(B \) are connected by the following constitutive equations

\[
\begin{align*}
D(x, t) &= \varepsilon E(x, t) \\
B(x, t) &= \mu H(x, t)
\end{align*}
\]

(1.2)

where \(\varepsilon, \mu \) are constant second-order tensors, while the charge density \(\rho \) is supposed to be zero and the magnetic and electric current densities \(I, J \) supplied only by external sources and therefore known.

The vector \(I \) is usually set equal to zero, which means that magnetic currents do not occur in nature, however we let for a non zero \(I \), because it might represent a forced electric displacement current.

Moreover we suppose that the boundary of the domain \(\Omega \) is realized by a “good” conductor, so the relation between the electric and magnetic intensity on \(\partial \Omega \), is described by (see [3]):

\[
E_\tau(x, t) = \alpha_0(x) H_\tau(x, t) \times n(x) + \int_0^{+\infty} \alpha(x, s) H_\tau(x, t - s) \times n(x) ds,
\]

(1.3)

where \(\alpha \in L^1(0, +\infty; L^\infty(\Omega)) \), \(\alpha_0 \geq 0, n \) is the unit outward normal to \(\partial \Omega \), whereas \(E_\tau \) and \(H_\tau \) represent respectively the tangential component of \(E \) and \(H \).

The boundary condition (1.3) is a generalization of the Schelkunoff-Graffi’s condition (see [4]); in fact when we are in presence of harmonic fields of frequency \(\omega \), i.e. when \(E(x, t) = \hat{E}(x, \omega) e^{i\omega t}, H(x, t) = \hat{H}(x, \omega) e^{i\omega t} \), from (1.3) we have:

\[
\hat{E}(x, \omega) = \left[\alpha_0(x) + \int_0^{+\infty} e^{-i\omega s} \alpha(x, s) ds \right] \hat{H}(x, \omega) \times n(x),
\]