THE EXTENDED BITSADZE-LAVREN'T'EV-TRICOMI
BOUNDARY VALUE PROBLEM

JOHN M. RASSIAS

F. G. Tricomi ([5], [6]) originated the theory of boundary value problems for mixed type equations by establishing the first mixed type equation known as the Tricomi equation

\[y \cdot u_{xx} + u_y = 0 \]

which is hyperbolic for \(y < 0 \), elliptic for \(y > 0 \), and parabolic for \(y = 0 \) and then observed that this equation could be applied in Aerodynamics and in general in Fluid Dynamics (transonic flows). See: M. Cribario [1], G. Fichera [2], and our doctoral dissertation [4]. Then M. A. Lavrent'ev and A. V. Bitsadze [3] established together a new mixed type boundary value problem for the equation

\[\text{sgn}(y) \cdot u_{xx} + u_y = 0 \]

where \(\text{sgn}(y) = 1 \) for \(y > 0 \), \(= -1 \) for \(y < 0 \), \(= 0 \) for \(y = 0 \), which involved the discontinuous coefficient \(K = \text{sgn}(y) \) of \(u_{xx} \) while in the case of Tricomi equation the corresponding coefficient \(T = y \) was continuous. In this paper we establish another mixed type boundary value problem for the extended Bitsadze-Lavrent'ev-Tricomi equation

\[L \cdot u = \text{sgn}(y) \cdot u_{xx} + \text{sgn}(x) \cdot u_{yy} + r(x, y) \cdot u = f(x, y) \]

where both coefficients \(K = \text{sgn}(y) \), \(M = \text{sgn}(x) \) of \(u_{xx} \), \(u_{yy} \), respectively are discontinuous, \(r = r(x, y) \) is once continuously differentiable, \(f = f(x, y) \) continuous, and then we prove a uniqueness theorem for quasi-regular solutions.

The Extended Bitsadze-Lavrent’ev-Tricomi Problem

Consider equation

\[
L \cdot u = \text{sgn}(y) \cdot u_{xx} + \text{sgn}(x) \cdot u_{yy} + r(x, y) \cdot u = f(x, y)
\]

A.M.S. 1980 Mathematics Subject Classification: Primary: 35M05, Secondary: 76H05, 76N15, 76G99.
in a bounded simply connected region \(G \subseteq \mathbb{R}^2 \) by the curves: A piecewise smooth curve \(g_0 \) lying in the region \(G_1: x > 0, y > 0 \) and intersecting the line \(y = 0 \) at the point \(B(x_b, 0), (x_b > 0) \), and the line \(x = 0 \) at the point \(C(0, y_c), (y_c > 0) \), a smooth curve \(g_2 \) through \(B \) meeting a characteristic \(s_1 \) of the equation (1) issued from \(A(0, 0) \) at the point \(P_1 \) in the region \(G_2: x > 0, y < 0 \), the curve \(g_1 \) consisting of the portion \(A P_1 \) of \(s_1 \), a smooth curve \(S_2 \) through \(C \) meeting a characteristic \(s_2 \) of the equation (1) issued from \(A(0, 0) \) at the point \(P_2 \) in the region \(G_3: x < 0, y > 0 \), and the curve \(S_1 \) consisting of the portion \(P_2 A \) of \(s_2 \) in the region \(G_3 \).

It is clear that we can consider equations

\begin{align*}
\text{(c1)} & \quad g_1: x = -y \text{ in } G_1, \\
\text{(c2)} & \quad g_2: x = x_b + k \cdot y \ (k \geq 1) \text{ in } G_2, \\
\text{(c3)} & \quad S_1: y = -x \text{ in } G_3, \\
\text{(c4)} & \quad S_2: y = y_c + h \cdot x \ (h \geq 1) \text{ in } G_1,
\end{align*}

such that \((c_1)\) and \((c_3)\) satisfy the characteristic equation

\[(2) \quad \text{sgn} \ (y) \cdot (d \ y)^2 + \text{sgn} \ (x) \cdot (d \ x)^2 = 0\]