GENERALIZATION OF P-HYPERGROUPS

THOMAS VOUGIOUKLIS

Si definiscono e si studiano larghe classi di ipergruppi derivanti da comuni semi-gruppi.

1. Introduction.

A hypergroup, in the sense of Marty (1934), is a set H equipped with an associative hyperoperation $\cdot : H \times H \rightarrow P(H)$ which satisfies the property that $xH = Hx = H$, for all $x \in H$. In this paper we consider hypergroups constructed from ordinary semigroups which generalized the notion of P-hypergroups introduced in [6]. In particular we study the cyclicity and reversibility properties of these structures.

For a preliminary report see author’s Generalization of P-hypergroups, Abstracts, Amer, Math. Soc. 37, 6 (2) p. 234 (1985).

2. Definitions.

Let (G, \cdot) be a semigroup and $P \subset G$, $P \neq \emptyset$. We shall call P-\textit{semihypergroup} the hyperstructure $(G, ^\ast)$ where the P-\textit{hyperoperation} * is defined as follows

$$^\ast : G \times G \rightarrow P(G) : (x, y) \mapsto xP^\ast y$$
In fact \((G, \cdot) \) is a semihypergroup because
\[
(x \cdot y) \cdot P z = z P y = y \cdot (y \cdot P z), \quad \forall x, y, z \in G
\]

Call \((G, \cdot) \) a \(P \)-hypergroup if it is a hypergroup in the sense of Marty, i.e. \((G, \cdot) \) is a \(P \)-semihypergroup and the reproduction axiom is valid:
\[
x \cdot P G = G \cdot P x = G, \quad \forall x \in G
\]

If \(P \) is a non empty subset of a group \(G \), then \((G, \cdot) \) is a \(P \)-hypergroup because we have
\[
x \cdot P G = \bigcup_{g \in G} x \cdot P g = \bigcup_{g \in G} x \cdot g P = x P G = G
\]

and similarily \(G \cdot P x = G \). We shall mainly consider this case. A subset \(H \) of \(G \) will be called \(P \)-subhypergroup of \((G, \cdot) \) if \(P \subseteq H \subseteq G \) and \((H, \cdot) \) is a hypergroup. In this paper we shall always assume \(P \neq \emptyset \).

The above definitions are generalizations of the ones in [6]. We simply note that in [6] the set \(\{e\} \cup P \) stands instead of \(P \) above.

Now let us exclude the degenerate cases of groups and total hypergroups \((G, \circ) \) i.e. \(x \circ y = G, \forall x, y \in G \). Then in the paper [3] it is proved that all cyclic and complete hypergroups [1] of rank less than 6 are isomorphic to those that are given there with multiplication tables. From those hypergroups only one is \(P \)-hypergroup: specifically the \(H_3 \) in Th. (4) which is a hypergroup with four elements and it can be obtained from the cyclic group \(G = \{a, a^2, a^3, a^4 = e\} \) with \(P = \{e, a^2\} \). We can see this setting in [3] \(x = e, y = a^2, z = a, t = a^3 \).

3. Some hyperhomomorphisms.

PROPOSITION Let \((G_1, \cdot) \), \((G_2, \circ) \) be two groups, \(f \in \text{Hom}(G_1, G_2) \) and \(P \subseteq G_1 \). Then the homomorphism \(f \) is a strong hyperhomomorphism between the \(P \)-hypergroups \((G_1, \cdot) \) and \((G_2, f(P)) \).

Proof. We have \(\forall x, y \in G_1 \)
\[
f(x \cdot y) = f(x P y) = f(x) \circ f(P) \circ f(y) = f(x)f(P)f(y) \quad Q.E.D.
\]

In this proposition if \(f \) is an isomorphism then it will also be a hyperisomorphism.